Two RING-Finger Ubiquitin E3 Ligases Regulate the Degradation of SPX4, An Internal Phosphate Sensor, for Phosphate Homeostasis and Signaling in Rice
SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins...
Saved in:
Published in | Molecular plant Vol. 12; no. 8; pp. 1060 - 1074 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
05.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.
SPX4, an internal Pi sensor, interacts with PHR2, a central regulator of Pi signaling, and regulates its activity. This study identified two RING-finger ubiquitin E3 ligases, which promote the degradation of SPX4 and thus modulate PHR2 activity for Pi homeostasis and Pi signaling in response to external Pi availability in rice. |
---|---|
AbstractList | SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.
SPX4, an internal Pi sensor, interacts with PHR2, a central regulator of Pi signaling, and regulates its activity. This study identified two RING-finger ubiquitin E3 ligases, which promote the degradation of SPX4 and thus modulate PHR2 activity for Pi homeostasis and Pi signaling in response to external Pi availability in rice. SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice. SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice. SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K and K lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice. |
Author | Xu, Zhuang Wang, Xueqing Ruan, Wenyuan Guo, Zhenhui Sun, Haiji Xu, Lei Zhao, Hongyu Yan, Chengqi Yi, Keke Guo, Meina |
Author_xml | – sequence: 1 givenname: Wenyuan surname: Ruan fullname: Ruan, Wenyuan organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 2 givenname: Meina surname: Guo fullname: Guo, Meina organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 3 givenname: Xueqing surname: Wang fullname: Wang, Xueqing organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 4 givenname: Zhenhui surname: Guo fullname: Guo, Zhenhui organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 5 givenname: Zhuang surname: Xu fullname: Xu, Zhuang organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 6 givenname: Lei surname: Xu fullname: Xu, Lei organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 7 givenname: Hongyu surname: Zhao fullname: Zhao, Hongyu organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 8 givenname: Haiji surname: Sun fullname: Sun, Haiji organization: College of Life Science, Shandong Normal University, Jinan 250014, China – sequence: 9 givenname: Chengqi surname: Yan fullname: Yan, Chengqi organization: Ningbo Academy of Agriculture Sciences, 19 Dehou Street, Ningbo City 315000, China – sequence: 10 givenname: Keke surname: Yi fullname: Yi, Keke email: yikeke@gmail.com organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31002982$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctq3DAUhk1JaS7tC3RRtOwidiVZ1sjQTch1YGjDTALdCVk-8miwpYkkt-Q98sD1dNJSughd6SC-7xz4_-PswHkHWfae4IJgwj9tisH324JiUheYFRiXr7IjMqtoXgs-O5hmPmM5xRU9zI5j3GDMseDlm-ywJBjTWtCj7Onuh0fL-Zfr_Mq6DgK6b-zDaJN16LJEC9upCBEtoRt7lQClNaAL6IJqVbLeIW_Q6vYbO0VnDs1dguBUj27XPm7XO3wFLvpwiowPf_3e-AF8TCraiJRr0cp2kzadR9PVpdXwNnttVB_h3fN7kt1fXd6d3-SLr9fz87NFrlldp7xqdCk4MRVuWCuAzXRrKKcVZg03jTGmrKqG8VqU2gioKyoYF1MyjAEndcnLk-zjfu82-IcRYpKDjRr6XjnwY5SUCl5jzgn5D5SQmjHC2YR-eEbHZoBWboMdVHiUv0OfALoHdPAxBjB_EILlrlm5kbtm5a5ZiZmcmp0k8Y-kbfpVQgrK9i-rn_cqTFl-txBk1BachtYG0Em23r6k_wSGXL1W |
CitedBy_id | crossref_primary_10_1093_jxb_erae434 crossref_primary_10_3389_fpls_2022_914648 crossref_primary_10_1093_jxb_erac258 crossref_primary_10_3390_ijms24054414 crossref_primary_10_1093_jxb_erac491 crossref_primary_10_1016_j_molp_2021_12_005 crossref_primary_10_3389_fpls_2022_867419 crossref_primary_10_1111_pce_14078 crossref_primary_10_1016_j_isci_2022_104242 crossref_primary_10_1016_j_jgg_2024_09_018 crossref_primary_10_1038_s41477_024_01682_3 crossref_primary_10_1093_plphys_kiac146 crossref_primary_10_1016_j_molp_2023_03_006 crossref_primary_10_3390_ijms23010158 crossref_primary_10_1016_j_molp_2020_12_005 crossref_primary_10_1016_j_molp_2022_12_002 crossref_primary_10_1111_ppl_14486 crossref_primary_10_1111_tpj_15193 crossref_primary_10_1016_j_tplants_2019_05_002 crossref_primary_10_1360_SSV_2023_0048 crossref_primary_10_1016_j_pbi_2020_07_002 crossref_primary_10_1111_nph_17973 crossref_primary_10_1111_tpj_15520 crossref_primary_10_1016_j_scienta_2022_111767 crossref_primary_10_1007_s11104_023_05976_x crossref_primary_10_1111_tpj_15402 crossref_primary_10_3390_cells11071167 crossref_primary_10_3389_fpls_2024_1340867 crossref_primary_10_3390_biom11081145 crossref_primary_10_1038_s41467_020_20681_4 crossref_primary_10_1111_tpj_14637 crossref_primary_10_1021_acs_jafc_4c02621 crossref_primary_10_1111_nph_17139 crossref_primary_10_1186_s12284_025_00768_6 crossref_primary_10_1093_pcp_pcab010 crossref_primary_10_1093_pcp_pcab011 crossref_primary_10_1016_j_envexpbot_2021_104483 crossref_primary_10_1111_tpj_70106 crossref_primary_10_1007_s44154_024_00181_x crossref_primary_10_1016_j_plantsci_2023_111618 crossref_primary_10_3390_ijms252010912 crossref_primary_10_1016_j_molp_2021_05_020 crossref_primary_10_1111_nph_19263 crossref_primary_10_3390_genes10121018 crossref_primary_10_1111_pce_14457 crossref_primary_10_3389_fpls_2022_917652 crossref_primary_10_1007_s11032_024_01508_2 crossref_primary_10_1007_s00344_023_11002_2 crossref_primary_10_1016_j_jplph_2021_153419 crossref_primary_10_1016_j_plantsci_2022_111257 crossref_primary_10_1016_j_plantsci_2025_112389 crossref_primary_10_1016_j_plaphy_2023_108215 crossref_primary_10_1042_BCJ20230163 crossref_primary_10_1111_nph_18933 crossref_primary_10_3389_fgene_2024_1469704 crossref_primary_10_1016_j_envexpbot_2023_105625 crossref_primary_10_2139_ssrn_3961281 crossref_primary_10_48130_forres_0024_0014 crossref_primary_10_1007_s11033_022_07354_9 crossref_primary_10_1016_j_molp_2023_09_012 crossref_primary_10_1111_nph_16102 crossref_primary_10_1111_nph_18963 crossref_primary_10_1111_nph_19579 crossref_primary_10_1016_j_indcrop_2023_117065 crossref_primary_10_1016_j_molp_2019_06_005 crossref_primary_10_1093_plphys_kiae495 crossref_primary_10_1016_j_jplph_2024_154317 crossref_primary_10_3390_ijms252212026 crossref_primary_10_1093_plcell_koac161 crossref_primary_10_1080_15592324_2019_1704528 crossref_primary_10_1007_s00299_021_02812_3 crossref_primary_10_1016_j_molp_2024_03_014 crossref_primary_10_1016_j_stress_2023_100207 crossref_primary_10_1152_physrev_00008_2019 crossref_primary_10_1016_j_envpol_2023_123009 crossref_primary_10_3390_plants10020246 crossref_primary_10_1093_plphys_kiab343 crossref_primary_10_1016_j_copbio_2024_103180 crossref_primary_10_1016_j_molp_2021_12_010 crossref_primary_10_1186_s40538_024_00648_z crossref_primary_10_1007_s00344_021_10486_0 crossref_primary_10_1111_tpj_15061 crossref_primary_10_1016_j_plaphy_2023_108128 |
Cites_doi | 10.1046/j.1365-313X.1994.6020271.x 10.1111/j.1365-313X.2004.02219.x 10.1104/pp.97.3.1087 10.1111/j.1469-8137.2012.04227.x 10.1186/s12284-017-0193-y 10.1371/journal.pgen.1006833 10.1371/journal.pone.0044005 10.1105/tpc.109.066605 10.1105/tpc.113.116012 10.1371/journal.pgen.1001102 10.1104/pp.111.181669 10.1104/pp.104.052423 10.1105/tpc.15.00321 10.1111/tpj.13516 10.1007/s11103-016-0564-6 10.1111/nph.15155 10.1371/journal.pgen.1002021 10.1104/pp.107.111443 10.1073/pnas.1404654111 10.1101/gad.204401 10.1038/s41477-019-0384-1 10.1016/j.febslet.2012.01.036 10.1038/461716a 10.1016/j.molp.2015.04.007 10.1105/tpc.112.096636 10.2113/GSELEMENTS.4.2.105 10.1038/nature06448 10.1111/j.1469-8137.2011.04002.x 10.1105/tpc.000745 10.1105/tpc.114.123208 10.1002/j.1460-2075.1987.tb02730.x 10.1111/j.1365-313X.2010.04170.x 10.1038/ncomms11095 10.1038/ncomms2479 10.1073/pnas.1514598112 10.1104/pp.15.00736 10.1093/jxb/ert424 10.1105/tpc.17.00845 10.1111/j.1365-3040.2008.01883.x 10.1016/j.copbio.2017.08.012 10.1111/j.1365-313X.2008.03460.x 10.1111/nph.14938 10.1039/C7MT00152E 10.1104/pp.111.184648 10.1093/aob/mct080 10.1093/mp/sst121 10.1073/pnas.1404680111 10.1126/science.aad9858 |
ContentType | Journal Article |
Copyright | 2019 The Author Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 The Author – notice: Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molp.2019.04.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1752-9867 |
EndPage | 1074 |
ExternalDocumentID | 31002982 10_1016_j_molp_2019_04_003 S1674205219301327 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --M .2P .I3 0R~ 123 2WC 4.4 457 53G 6I. 7-5 70D 8P~ AABVA AACTN AAEDW AAFTH AAIAV AAIKJ AAIYJ AAKOC AALRI AAOAW AATLK AAVLN AAXUO ABGRD ABJNI ABMAC ABNKS ABVKL ABYKQ ABZBJ ACDAQ ACGFS ACPRK ACRLP ADBBV ADEYI ADEZE ADFTL ADOCK ADZTZ AEBSH AEGPL AEKER AENEX AEXQZ AFKWA AFRAH AFTJW AFXIZ AGKEF AGUBO AHMBA AHXPO AIEXJ AIJHB AIKHN AITUG AJOXV AKHUL ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 CZ4 DU5 E3Z EBS EE~ EFJIC EFLBG EJD ESX F5P F9B FDB FIRID FYGXN GBLVA H5~ HW0 HZ~ IOX IXB KOM M-Z M41 M49 N9A NU- O9- OAUVE OK1 P2P PQQKQ Q1. RCE RD5 ROL RW1 RXO SPCBC SSA SSZ T5K TR2 W8F X7H ~91 ~G- 1RT AAEDT AAHBH AAMRU AAQFI AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACVFH ADCNI ADVLN AEIPS AEUPX AFPUW AGCQF AGHFR AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION CKLRP CW9 H13 O0~ OVD SSH TEORI TGP 0SF CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c499t-5bc3861f50b4d8e47cdf262504b6fbfff355b46983cf8e952846886744e619363 |
IEDL.DBID | IXB |
ISSN | 1674-2052 1752-9867 |
IngestDate | Tue Aug 05 10:18:04 EDT 2025 Thu Jul 10 23:56:25 EDT 2025 Wed Feb 19 02:31:18 EST 2025 Tue Jul 01 01:40:48 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Fri Feb 23 02:27:16 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | ubiquitination Pi signaling Pi homeostasis phosphate regulation network rice PHR2 SPX4 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-5bc3861f50b4d8e47cdf262504b6fbfff355b46983cf8e952846886744e619363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1674205219301327/pdf |
PMID | 31002982 |
PQID | 2211944164 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2286906611 proquest_miscellaneous_2211944164 pubmed_primary_31002982 crossref_primary_10_1016_j_molp_2019_04_003 crossref_citationtrail_10_1016_j_molp_2019_04_003 elsevier_sciencedirect_doi_10_1016_j_molp_2019_04_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-05 |
PublicationDateYYYYMMDD | 2019-08-05 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular plant |
PublicationTitleAlternate | Mol Plant |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ren, Guo, Chang, Chen, Zhao, Zhong, Li (bib32) 2012; 7 Liu, Cheng, Liu, Li, Chen, Gu, Sun (bib19) 2017; 13 Ruan, Guo, Wu, Yi (bib33) 2017; 93 Gilbert (bib6) 2009; 461 Zhong, Wang, Guo, Zhu, Shi, He, Liu, Wu, Zhang, Lv (bib50) 2018; 219 Liu, Wang, Ren, Shen, Li, Ling, Wu, Lian, Wu (bib18) 2010; 62 Poirier, Thoma, Somerville, Schiefelbein (bib30) 1991; 97 Puga, Mateos, Charukesi, Wang, Franco-Zorrilla, de Lorenzo, Irigoyen, Masiero, Bustos, Rodríguez (bib31) 2014; 111 Valdés-López, Arenas-Huertero, Ramírez, Girard, Sánchez, Vance, Luis Reyes, Hernández (bib40) 2008; 31 Kant, Peng, Rothstein (bib14) 2011; 7 Wang, Huang, Ying, Li, Secco, Tyerman, Whelan, Shou (bib42) 2012; 196 Mao, Zhang, Xu, Zhang, Gou, Zhu (bib26) 2013; 6 Marino, Froidure, Canonne, Ben Khaled, Khafif, Pouzet, Jauneau, Roby, Rivas (bib27) 2013; 4 Lv, Zhong, Wang, Wang, Zhang, Shi, Wu, Liu, Mao, Yi (bib23) 2014; 26 Bustos, Castrillo, Linhares, Puga, Rubio, Pérez-Pérez, Solano, Leyva, Paz-Ares (bib1) 2010; 6 Ye, Wang, Su, Wu, Chen (bib47) 2018; 30 Chen, Liu, Ni, Wang, Bai, Shi, Gan, Wu, Wu (bib2) 2011; 157 Wang, Sun, Miao, Guo, Shi, Chen, Zhao, Li, Han, Tong (bib43) 2013; 111 Wild, Gerasimaite, Jung, Truffault, Pavlovic, Schmidt, Saiardi, Jessen, Poirier, Hothorn (bib45) 2016; 352 Zhou, Jiao, Wu, Li, Wang, He, Zhong, Wu (bib51) 2008; 146 Shen, Liu, Song, Xie, Hanley-Bowdoin, Zhou (bib37) 2011; 157 Kirkby (bib15) 2012 Rubio, Linhares, Solano, Martín, Iglesias, Leyva, Paz-Ares (bib34) 2001; 15 Liu, Huang, Yang, Hong, Huang, Wang, Chiang, Tsai, Lu, Chiou (bib22) 2016; 7 Lin, Huang, Chiou (bib17) 2013; 25 Wang, Ruan, Shi, Zhang, Xiang, Yang, Li, Wu, Liu, Yu (bib44) 2014; 111 Ma, Zhang, Zhu, Liu, Chen, Qiu, Wang, Yang, Li, Lin (bib24) 2015; 8 Manning (bib25) 2008; 4 Jefferson, Kavanagh, Bevan (bib12) 1987; 6 Yue, Ying, Wang, Zhao, Dong, Whelan, Shou (bib49) 2017; 90 Feng, Martinez, Gusmaroli, Wang, Zhou, Wang, Chen, Yu, Iglesias-Pedraz, Kircher (bib5) 2008; 451 Hamburger, Rezzonico, MacDonald-Comber Petetot, Somerville, Poirier (bib8) 2002; 14 Hindt, Akmakjian, Pivarski, Punshon, Baxter, Salt, Guerinot (bib10) 2017; 9 Secco, Wang, Arpat, Wang, Poirier, Tyerman, Wu, Shou, Whelan (bib35) 2012; 193 Hiei, Otis, Komari, Kumashiro (bib9) 1994; 6 Guo, Ruan, Li, Huang, Zeng, Liu, Yu, Ding, Wu, Wu (bib7) 2015; 168 Yoshida, Forno, Cock, Gomez (bib48) 1976 Liu, Huang, Tseng, Lai, Lin, Lin, Chen, Chiou (bib21) 2012; 24 Secco, Wang, Shou, Whelan (bib36) 2012; 586 Stone, Hauksdóttir, Troy, Herschleb, Kraft, Callis (bib39) 2005; 137 Duan, Yi, Dang, Huang, Wu, Wu (bib4) 2008; 54 Ding, Zhang, Qin (bib3) 2015; 27 Walter, Chaban, Schütze, Batistic, Weckermann, Näke, Blazevic, Grefen, Schumacher, Oecking (bib41) 2004; 40 Liu, Yang, Luan, Wang, Zhang, Zhang, Shi, Zhao, Lan, Luan (bib20) 2015; 112 Hu, Jiang, Wang, Qiu, Zhang, Liu, Li, Gao, Liu, Qian (bib11) 2019; 5 Yang, Wang, Mao, Lin (bib46) 2017; 10 Jung, Ried, Hothorn, Poirier (bib13) 2018; 49 Lin, Lin, Chiang, Syu, Hsieh, Chiou (bib16) 2018; 217 Shi, Hu, Zhang, Zhang, Yu, Wu, Wu (bib38) 2014; 65 Morris, Thornber, Codrai, Richardson, Craig, Sadanandom, Thomas, Jackson (bib28) 2010; 22 Neumann, Römheld (bib29) 2012 Wang (10.1016/j.molp.2019.04.003_bib42) 2012; 196 Ding (10.1016/j.molp.2019.04.003_bib3) 2015; 27 Ruan (10.1016/j.molp.2019.04.003_bib33) 2017; 93 Morris (10.1016/j.molp.2019.04.003_bib28) 2010; 22 Ma (10.1016/j.molp.2019.04.003_bib24) 2015; 8 Secco (10.1016/j.molp.2019.04.003_bib36) 2012; 586 Jefferson (10.1016/j.molp.2019.04.003_bib12) 1987; 6 Lin (10.1016/j.molp.2019.04.003_bib16) 2018; 217 Mao (10.1016/j.molp.2019.04.003_bib26) 2013; 6 Liu (10.1016/j.molp.2019.04.003_bib20) 2015; 112 Lv (10.1016/j.molp.2019.04.003_bib23) 2014; 26 Liu (10.1016/j.molp.2019.04.003_bib18) 2010; 62 Kirkby (10.1016/j.molp.2019.04.003_bib15) 2012 Bustos (10.1016/j.molp.2019.04.003_bib1) 2010; 6 Secco (10.1016/j.molp.2019.04.003_bib35) 2012; 193 Ren (10.1016/j.molp.2019.04.003_bib32) 2012; 7 Liu (10.1016/j.molp.2019.04.003_bib22) 2016; 7 Walter (10.1016/j.molp.2019.04.003_bib41) 2004; 40 Chen (10.1016/j.molp.2019.04.003_bib2) 2011; 157 Hu (10.1016/j.molp.2019.04.003_bib11) 2019; 5 Wang (10.1016/j.molp.2019.04.003_bib43) 2013; 111 Puga (10.1016/j.molp.2019.04.003_bib31) 2014; 111 Yang (10.1016/j.molp.2019.04.003_bib46) 2017; 10 Hamburger (10.1016/j.molp.2019.04.003_bib8) 2002; 14 Lin (10.1016/j.molp.2019.04.003_bib17) 2013; 25 Hindt (10.1016/j.molp.2019.04.003_bib10) 2017; 9 Liu (10.1016/j.molp.2019.04.003_bib21) 2012; 24 Jung (10.1016/j.molp.2019.04.003_bib13) 2018; 49 Yue (10.1016/j.molp.2019.04.003_bib49) 2017; 90 Kant (10.1016/j.molp.2019.04.003_bib14) 2011; 7 Marino (10.1016/j.molp.2019.04.003_bib27) 2013; 4 Duan (10.1016/j.molp.2019.04.003_bib4) 2008; 54 Zhong (10.1016/j.molp.2019.04.003_bib50) 2018; 219 Gilbert (10.1016/j.molp.2019.04.003_bib6) 2009; 461 Shen (10.1016/j.molp.2019.04.003_bib37) 2011; 157 Stone (10.1016/j.molp.2019.04.003_bib39) 2005; 137 Zhou (10.1016/j.molp.2019.04.003_bib51) 2008; 146 Hiei (10.1016/j.molp.2019.04.003_bib9) 1994; 6 Ye (10.1016/j.molp.2019.04.003_bib47) 2018; 30 Wild (10.1016/j.molp.2019.04.003_bib45) 2016; 352 Feng (10.1016/j.molp.2019.04.003_bib5) 2008; 451 Wang (10.1016/j.molp.2019.04.003_bib44) 2014; 111 Poirier (10.1016/j.molp.2019.04.003_bib30) 1991; 97 Shi (10.1016/j.molp.2019.04.003_bib38) 2014; 65 Guo (10.1016/j.molp.2019.04.003_bib7) 2015; 168 Neumann (10.1016/j.molp.2019.04.003_bib29) 2012 Manning (10.1016/j.molp.2019.04.003_bib25) 2008; 4 Valdés-López (10.1016/j.molp.2019.04.003_bib40) 2008; 31 Liu (10.1016/j.molp.2019.04.003_bib19) 2017; 13 Rubio (10.1016/j.molp.2019.04.003_bib34) 2001; 15 Yoshida (10.1016/j.molp.2019.04.003_bib48) 1976 |
References_xml | – volume: 25 start-page: 4061 year: 2013 end-page: 4074 ident: bib17 article-title: Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in publication-title: Plant Cell – volume: 352 start-page: 986 year: 2016 end-page: 990 ident: bib45 article-title: Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains publication-title: Science – start-page: 3 year: 2012 end-page: 5 ident: bib15 article-title: Introduction, definition and classification of nutrients publication-title: Marschner’s Mineral Nutrition of Higher Plants – volume: 5 start-page: 401 year: 2019 end-page: 413 ident: bib11 article-title: Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants publication-title: Nat. Plants – volume: 90 start-page: 1040 year: 2017 end-page: 1051 ident: bib49 article-title: OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in publication-title: Plant J. – volume: 6 start-page: 3901 year: 1987 end-page: 3907 ident: bib12 article-title: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants publication-title: EMBO J. – volume: 40 start-page: 428 year: 2004 end-page: 438 ident: bib41 article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation publication-title: Plant J. – volume: 6 start-page: e1001102 year: 2010 ident: bib1 article-title: A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in publication-title: PLoS Genet. – volume: 6 start-page: 271 year: 1994 end-page: 282 ident: bib9 article-title: Efficient transformation of rice ( publication-title: Plant J. – volume: 31 start-page: 1834 year: 2008 end-page: 1843 ident: bib40 article-title: Essential role of MYB transcription factor: PvPHR1 and microRNA: publication-title: Plant Cell Environ. – volume: 22 start-page: 1118 year: 2010 end-page: 1128 ident: bib28 article-title: DAY NEUTRAL FLOWERING represses CONSTANS to prevent arabidopsis flowering early in short days publication-title: Plant Cell. – volume: 65 start-page: 859 year: 2014 end-page: 870 ident: bib38 article-title: The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice publication-title: J. Exp. Bot. – volume: 26 start-page: 1586 year: 2014 end-page: 1597 ident: bib23 article-title: SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice publication-title: Plant Cell – volume: 111 start-page: 14947 year: 2014 end-page: 14952 ident: bib31 article-title: SPX1 is a phosphate-dependent inhibitor of phosphate starvation response 1 in publication-title: Proc. Natl. Acad. Sci. U S A – volume: 15 start-page: 2122 year: 2001 end-page: 2133 ident: bib34 article-title: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae publication-title: Genes Dev. – volume: 193 start-page: 842 year: 2012 end-page: 851 ident: bib35 article-title: The emerging importance of the SPX domain-containing proteins in phosphate homeostasis publication-title: New Phytol. – volume: 196 start-page: 139 year: 2012 end-page: 148 ident: bib42 article-title: Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves publication-title: New Phytol. – volume: 219 start-page: 135 year: 2018 end-page: 148 ident: bib50 article-title: Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2 publication-title: New Phytol. – volume: 8 start-page: 1274 year: 2015 end-page: 1284 ident: bib24 article-title: A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants publication-title: Mol. Plant – volume: 157 start-page: 269 year: 2011 end-page: 278 ident: bib2 article-title: OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in Rice publication-title: Plant Physiol. – volume: 7 start-page: e1002021 year: 2011 ident: bib14 article-title: Genetic regulation by NLA and MicroRNA827 for maintaining nitrate-dependent phosphate homeostasis in publication-title: PLoS Genet. – volume: 93 start-page: 327 year: 2017 end-page: 340 ident: bib33 article-title: Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice publication-title: Plant Mol. Biol. – volume: 7 start-page: e44005 year: 2012 ident: bib32 article-title: Brassica napus PHR1 gene encoding a MYB-like protein function in response to phosphate starvation publication-title: PLoS One – volume: 586 start-page: 289 year: 2012 end-page: 298 ident: bib36 article-title: Phosphate homeostasis in the yeast publication-title: FEBS Lett. – volume: 13 start-page: e1006833 year: 2017 ident: bib19 article-title: MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in publication-title: PLoS Genet. – volume: 451 start-page: 475 year: 2008 end-page: 479 ident: bib5 article-title: Coordinated regulation of publication-title: Nature – volume: 24 start-page: 2168 year: 2012 end-page: 2183 ident: bib21 article-title: PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in publication-title: Plant Cell – volume: 30 start-page: 1062 year: 2018 end-page: 1076 ident: bib47 article-title: The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-Pi stress in publication-title: Plant Cell. – volume: 157 start-page: 1394 year: 2011 end-page: 1406 ident: bib37 article-title: Tomato SlSnRK1 protein interacts with and phosphorylates bC1, a pathogenesis protein encoded by a geminivirus b-satellite publication-title: Plant Physiol. – volume: 49 start-page: 156 year: 2018 end-page: 162 ident: bib13 article-title: Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain publication-title: Curr. Opin. Biotechnol. – volume: 112 start-page: E6571 year: 2015 end-page: E6578 ident: bib20 article-title: A vacuolar phosphate transporter essential for phosphate homeostasis in publication-title: Proc. Natl. Acad. Sci. U S A – volume: 62 start-page: 508 year: 2010 end-page: 517 ident: bib18 article-title: OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice publication-title: Plant J. – volume: 27 start-page: 3228 year: 2015 end-page: 3244 ident: bib3 article-title: RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation publication-title: Plant Cell – volume: 168 start-page: 762 year: 2015 end-page: 776 ident: bib7 article-title: Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice publication-title: Plant Physiol. – volume: 4 start-page: 105 year: 2008 end-page: 108 ident: bib25 article-title: Phosphate minerals, environmental pollution and sustainable agriculture publication-title: Elements – volume: 146 start-page: 1673 year: 2008 end-page: 1686 ident: bib51 article-title: OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants publication-title: Plant Physiol. – year: 1976 ident: bib48 article-title: Laboratory Manual for Physiological Studies of Rice – volume: 97 start-page: 1087 year: 1991 end-page: 1093 ident: bib30 article-title: Mutant of publication-title: Plant Physiol. – volume: 137 start-page: 13 year: 2005 end-page: 30 ident: bib39 article-title: Functional analysis of the RING-type ubiquitin ligase family of publication-title: Plant Physiol. – volume: 217 start-page: 1712 year: 2018 end-page: 1725 ident: bib16 article-title: Evolution of publication-title: New Phytol. – volume: 461 start-page: 716 year: 2009 end-page: 718 ident: bib6 article-title: Environment: the disappearing nutrient publication-title: Nature – volume: 111 start-page: 14953 year: 2014 end-page: 14958 ident: bib44 article-title: Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner publication-title: Proc. Natl. Acad. Sci. U S A – volume: 6 start-page: 2008 year: 2013 end-page: 2011 ident: bib26 article-title: Application of the CRISPR-Cas system for efficient genome engineering in plants publication-title: Mol. Plant – volume: 4 start-page: 1476 year: 2013 ident: bib27 article-title: ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence publication-title: Nat. Commun. – start-page: 347 year: 2012 end-page: 368 ident: bib29 article-title: Rhizosphere chemistry in relation to plant nutrition publication-title: Marschner’s Mineral Nutrition of Higher Plants – volume: 111 start-page: 1139 year: 2013 end-page: 1153 ident: bib43 article-title: A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signaling and increases grain yield in wheat publication-title: Ann. Bot. (Lond). – volume: 7 start-page: 11095 year: 2016 ident: bib22 article-title: Identification of plant vacuolar transporters mediating phosphate storage publication-title: Nat. Commun. – volume: 54 start-page: 965 year: 2008 end-page: 975 ident: bib4 article-title: Characterization of a sub-family of publication-title: Plant J. – volume: 14 start-page: 889 year: 2002 end-page: 902 ident: bib8 article-title: Identification and characterization of the publication-title: Plant Cell – volume: 9 start-page: 876 year: 2017 end-page: 890 ident: bib10 article-title: BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in publication-title: Metallomics – volume: 10 start-page: 52 year: 2017 ident: bib46 article-title: Characterization of the rice NLA family reveals a key role for OsNLA1 in phosphate homeostasis publication-title: Rice (N. Y). – volume: 6 start-page: 271 year: 1994 ident: 10.1016/j.molp.2019.04.003_bib9 article-title: Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA publication-title: Plant J. doi: 10.1046/j.1365-313X.1994.6020271.x – volume: 40 start-page: 428 year: 2004 ident: 10.1016/j.molp.2019.04.003_bib41 article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02219.x – volume: 97 start-page: 1087 year: 1991 ident: 10.1016/j.molp.2019.04.003_bib30 article-title: Mutant of Arabidopsis deficient in xylem loading of phosphate publication-title: Plant Physiol. doi: 10.1104/pp.97.3.1087 – volume: 196 start-page: 139 year: 2012 ident: 10.1016/j.molp.2019.04.003_bib42 article-title: Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04227.x – volume: 10 start-page: 52 year: 2017 ident: 10.1016/j.molp.2019.04.003_bib46 article-title: Characterization of the rice NLA family reveals a key role for OsNLA1 in phosphate homeostasis publication-title: Rice (N. Y). doi: 10.1186/s12284-017-0193-y – start-page: 347 year: 2012 ident: 10.1016/j.molp.2019.04.003_bib29 article-title: Rhizosphere chemistry in relation to plant nutrition – volume: 13 start-page: e1006833 year: 2017 ident: 10.1016/j.molp.2019.04.003_bib19 article-title: MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006833 – volume: 7 start-page: e44005 year: 2012 ident: 10.1016/j.molp.2019.04.003_bib32 article-title: Brassica napus PHR1 gene encoding a MYB-like protein function in response to phosphate starvation publication-title: PLoS One doi: 10.1371/journal.pone.0044005 – volume: 22 start-page: 1118 year: 2010 ident: 10.1016/j.molp.2019.04.003_bib28 article-title: DAY NEUTRAL FLOWERING represses CONSTANS to prevent arabidopsis flowering early in short days publication-title: Plant Cell. doi: 10.1105/tpc.109.066605 – volume: 25 start-page: 4061 year: 2013 ident: 10.1016/j.molp.2019.04.003_bib17 article-title: Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.116012 – volume: 6 start-page: e1001102 year: 2010 ident: 10.1016/j.molp.2019.04.003_bib1 article-title: A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001102 – volume: 157 start-page: 269 year: 2011 ident: 10.1016/j.molp.2019.04.003_bib2 article-title: OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in Rice publication-title: Plant Physiol. doi: 10.1104/pp.111.181669 – volume: 137 start-page: 13 year: 2005 ident: 10.1016/j.molp.2019.04.003_bib39 article-title: Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.104.052423 – volume: 27 start-page: 3228 year: 2015 ident: 10.1016/j.molp.2019.04.003_bib3 article-title: Arabidopsis RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation publication-title: Plant Cell doi: 10.1105/tpc.15.00321 – volume: 90 start-page: 1040 year: 2017 ident: 10.1016/j.molp.2019.04.003_bib49 article-title: OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters publication-title: Plant J. doi: 10.1111/tpj.13516 – volume: 93 start-page: 327 year: 2017 ident: 10.1016/j.molp.2019.04.003_bib33 article-title: Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice publication-title: Plant Mol. Biol. doi: 10.1007/s11103-016-0564-6 – volume: 219 start-page: 135 year: 2018 ident: 10.1016/j.molp.2019.04.003_bib50 article-title: Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2 publication-title: New Phytol. doi: 10.1111/nph.15155 – volume: 7 start-page: e1002021 year: 2011 ident: 10.1016/j.molp.2019.04.003_bib14 article-title: Genetic regulation by NLA and MicroRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002021 – volume: 146 start-page: 1673 year: 2008 ident: 10.1016/j.molp.2019.04.003_bib51 article-title: OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants publication-title: Plant Physiol. doi: 10.1104/pp.107.111443 – volume: 111 start-page: 14947 year: 2014 ident: 10.1016/j.molp.2019.04.003_bib31 article-title: SPX1 is a phosphate-dependent inhibitor of phosphate starvation response 1 in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1404654111 – volume: 15 start-page: 2122 year: 2001 ident: 10.1016/j.molp.2019.04.003_bib34 article-title: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae publication-title: Genes Dev. doi: 10.1101/gad.204401 – volume: 5 start-page: 401 year: 2019 ident: 10.1016/j.molp.2019.04.003_bib11 article-title: Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants publication-title: Nat. Plants doi: 10.1038/s41477-019-0384-1 – volume: 586 start-page: 289 year: 2012 ident: 10.1016/j.molp.2019.04.003_bib36 article-title: Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.01.036 – volume: 461 start-page: 716 year: 2009 ident: 10.1016/j.molp.2019.04.003_bib6 article-title: Environment: the disappearing nutrient publication-title: Nature doi: 10.1038/461716a – volume: 8 start-page: 1274 year: 2015 ident: 10.1016/j.molp.2019.04.003_bib24 article-title: A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants publication-title: Mol. Plant doi: 10.1016/j.molp.2015.04.007 – volume: 24 start-page: 2168 year: 2012 ident: 10.1016/j.molp.2019.04.003_bib21 article-title: PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.096636 – volume: 4 start-page: 105 year: 2008 ident: 10.1016/j.molp.2019.04.003_bib25 article-title: Phosphate minerals, environmental pollution and sustainable agriculture publication-title: Elements doi: 10.2113/GSELEMENTS.4.2.105 – volume: 451 start-page: 475 year: 2008 ident: 10.1016/j.molp.2019.04.003_bib5 article-title: Coordinated regulation of Arabidopsis thaliana development by light and gibberellins publication-title: Nature doi: 10.1038/nature06448 – volume: 193 start-page: 842 year: 2012 ident: 10.1016/j.molp.2019.04.003_bib35 article-title: The emerging importance of the SPX domain-containing proteins in phosphate homeostasis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.04002.x – volume: 14 start-page: 889 year: 2002 ident: 10.1016/j.molp.2019.04.003_bib8 article-title: Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem publication-title: Plant Cell doi: 10.1105/tpc.000745 – volume: 26 start-page: 1586 year: 2014 ident: 10.1016/j.molp.2019.04.003_bib23 article-title: SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice publication-title: Plant Cell doi: 10.1105/tpc.114.123208 – volume: 6 start-page: 3901 year: 1987 ident: 10.1016/j.molp.2019.04.003_bib12 article-title: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants publication-title: EMBO J. doi: 10.1002/j.1460-2075.1987.tb02730.x – volume: 62 start-page: 508 year: 2010 ident: 10.1016/j.molp.2019.04.003_bib18 article-title: OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04170.x – volume: 7 start-page: 11095 year: 2016 ident: 10.1016/j.molp.2019.04.003_bib22 article-title: Identification of plant vacuolar transporters mediating phosphate storage publication-title: Nat. Commun. doi: 10.1038/ncomms11095 – volume: 4 start-page: 1476 year: 2013 ident: 10.1016/j.molp.2019.04.003_bib27 article-title: Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence publication-title: Nat. Commun. doi: 10.1038/ncomms2479 – volume: 112 start-page: E6571 year: 2015 ident: 10.1016/j.molp.2019.04.003_bib20 article-title: A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1514598112 – volume: 168 start-page: 762 year: 2015 ident: 10.1016/j.molp.2019.04.003_bib7 article-title: Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice publication-title: Plant Physiol. doi: 10.1104/pp.15.00736 – volume: 65 start-page: 859 year: 2014 ident: 10.1016/j.molp.2019.04.003_bib38 article-title: The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert424 – volume: 30 start-page: 1062 year: 2018 ident: 10.1016/j.molp.2019.04.003_bib47 article-title: The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-Pi stress in Arabidopsis publication-title: Plant Cell. doi: 10.1105/tpc.17.00845 – volume: 31 start-page: 1834 year: 2008 ident: 10.1016/j.molp.2019.04.003_bib40 article-title: Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signaling in common bean roots publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2008.01883.x – year: 1976 ident: 10.1016/j.molp.2019.04.003_bib48 – volume: 49 start-page: 156 year: 2018 ident: 10.1016/j.molp.2019.04.003_bib13 article-title: Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.08.012 – volume: 54 start-page: 965 year: 2008 ident: 10.1016/j.molp.2019.04.003_bib4 article-title: Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03460.x – volume: 217 start-page: 1712 year: 2018 ident: 10.1016/j.molp.2019.04.003_bib16 article-title: Evolution of microRNA827 targeting in the plant kingdom publication-title: New Phytol. doi: 10.1111/nph.14938 – volume: 9 start-page: 876 year: 2017 ident: 10.1016/j.molp.2019.04.003_bib10 article-title: BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana publication-title: Metallomics doi: 10.1039/C7MT00152E – volume: 157 start-page: 1394 year: 2011 ident: 10.1016/j.molp.2019.04.003_bib37 article-title: Tomato SlSnRK1 protein interacts with and phosphorylates bC1, a pathogenesis protein encoded by a geminivirus b-satellite publication-title: Plant Physiol. doi: 10.1104/pp.111.184648 – volume: 111 start-page: 1139 year: 2013 ident: 10.1016/j.molp.2019.04.003_bib43 article-title: A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signaling and increases grain yield in wheat publication-title: Ann. Bot. (Lond). doi: 10.1093/aob/mct080 – volume: 6 start-page: 2008 year: 2013 ident: 10.1016/j.molp.2019.04.003_bib26 article-title: Application of the CRISPR-Cas system for efficient genome engineering in plants publication-title: Mol. Plant doi: 10.1093/mp/sst121 – start-page: 3 year: 2012 ident: 10.1016/j.molp.2019.04.003_bib15 article-title: Introduction, definition and classification of nutrients – volume: 111 start-page: 14953 year: 2014 ident: 10.1016/j.molp.2019.04.003_bib44 article-title: Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1404680111 – volume: 352 start-page: 986 year: 2016 ident: 10.1016/j.molp.2019.04.003_bib45 article-title: Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains publication-title: Science doi: 10.1126/science.aad9858 |
SSID | ssj0060863 |
Score | 2.5352647 |
Snippet | SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are... SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1060 |
SubjectTerms | cytoplasm enzyme activity eukaryotic cells Gene Expression Regulation, Plant - genetics Homeostasis loss-of-function mutation lysine mutants Oryza - genetics phosphate regulation network phosphates PHR2 Pi homeostasis Pi signaling Plant Proteins - genetics Plant Proteins - metabolism rice SPX4 two hybrid system techniques ubiquitin ubiquitin-protein ligase Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism ubiquitination Ubiquitination - genetics Ubiquitination - physiology |
Title | Two RING-Finger Ubiquitin E3 Ligases Regulate the Degradation of SPX4, An Internal Phosphate Sensor, for Phosphate Homeostasis and Signaling in Rice |
URI | https://dx.doi.org/10.1016/j.molp.2019.04.003 https://www.ncbi.nlm.nih.gov/pubmed/31002982 https://www.proquest.com/docview/2211944164 https://www.proquest.com/docview/2286906611 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemwQMvaHx3wGQk3ljUxnYc57ErqwqMqWpXqW9WnNhdUInL0grt_9gfzF0-JhCiDzxFic6K5Yvvfhff_Y6Q9zFTlgMQD7hgGKAMBkGaJTLIeB4nzFgbGixO_nopJwvxeRktD8ioq4XBtMrW9jc2vbbW7ZN-u5r9TVH055g_z7D2NOF4YIAV5VyouohvedZZYwmQvU6yB-EApdvCmSbH67tfI2dlmNR0p13jrL-d07_AZ-2ExkfkcYse6bCZ4BNyYMun5OGZB4R3-4zcXf30FLMbgnH9s44uTPFjV2yLkp5zelGswGNVdNZ0n7cUoB_9iFwRTVsl6h2dT5filA5L2v4oXNPpta821yg-h4DX35xSQLm_PcU26x4QZlVUNC1zOi9WCO3LFYW3zsAKPSeL8fnVaBK0XReCDKKfbRCZjCsZumhgRK6siLPcMYlMZ0Y645wDhGKw7yTPnLJJBP5NKgXLKywEY1zyF-Sw9KV9RWjOU2XjOGUYt6nQmZQJB0pIEwiNrRA9EnbLrbOWkhw7Y6x1l3v2TaOKNKpIDwQSmfbIh_sxm4aQY6901GlR__FZafAYe8e961SuYb_hIUpaWr-rNENKPMCQUuyTwT5fgHzCHnnZfC_3c8UDFZYodvyfM3tNHuFdnYMYvSGH25udfQu4aGtOyIPhaHYxxeunL5PLk3oj_AJJqAuX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKQYIL4k14DhKc6CpZ2_s6cGhpo4SmVdUkUm7uetdOF4Xd0E1U9X_wT_iDzOyjAiFyQOrVO15bHnvmG3sejL0PeGgEAnFHSE4GSq_nxEnkO4lIg4hrY1xNwclHx_5gKr_MvNkW-9nGwpBbZSP7a5leSeumpdusZneZZd0x-c9zij2NBD0YBI1n5aG5ukS7rfw03Ecmf-C8fzD5PHCa0gJOghB_5Xg6EaHvWq-nZRoaGSSp5T6l89K-1dZaVMOaiiuKxIYm8lCI-2GIA0qDFofwBf73FruN6CMgaTCc7bXi30cbofLqR2KHptdE6tROZd-KBSXJdKMqv2pbqetvbfgvtFtpvf4Ddr-Bq7Bbr8hDtmXyR-zOXoGQ8uox-zG5LIDcKZx-dTsIU519X2erLIcDAaNsjiqyhNO63L0BxJqwT8kp6jpOUFgYn8zkDuzm0NxMLuDkvCiX50Q-Rgu7uNgBhNW_tVJd9wIhbZmVEOcpjLM52RL5HHDUUxR7T9j0RnjxlG3nRW6eM0hFHJogiDkZiqFrdcylRSbEEdriRsoOc9vlVkmTA51KcSxU6-z2VRGLFLFI9SRlTu2wj9d9lnUGkI3UXstF9cc-VqiiNvZ717Jc4QGnV5s4N8W6VJxy8CFo9eUmGioshlDL7bBn9X65niu94PAo5C_-c2Zv2d3B5GikRsPjw5fsHn2pHCC9V2x7dbE2rxGUrfSb6hAAO7vpU_cLT81EXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+RING-Finger+Ubiquitin+E3+Ligases+Regulate+the+Degradation+of+SPX4%2C+An+Internal+Phosphate+Sensor%2C+for+Phosphate+Homeostasis+and+Signaling+in+Rice&rft.jtitle=Molecular+plant&rft.au=Ruan%2C+Wenyuan&rft.au=Guo%2C+Meina&rft.au=Wang%2C+Xueqing&rft.au=Guo%2C+Zhenhui&rft.date=2019-08-05&rft.pub=Elsevier+Inc&rft.issn=1674-2052&rft.eissn=1752-9867&rft.volume=12&rft.issue=8&rft.spage=1060&rft.epage=1074&rft_id=info:doi/10.1016%2Fj.molp.2019.04.003&rft.externalDocID=S1674205219301327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2052&client=summon |