Two RING-Finger Ubiquitin E3 Ligases Regulate the Degradation of SPX4, An Internal Phosphate Sensor, for Phosphate Homeostasis and Signaling in Rice

SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 12; no. 8; pp. 1060 - 1074
Main Authors Ruan, Wenyuan, Guo, Meina, Wang, Xueqing, Guo, Zhenhui, Xu, Zhuang, Xu, Lei, Zhao, Hongyu, Sun, Haiji, Yan, Chengqi, Yi, Keke
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 05.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice. SPX4, an internal Pi sensor, interacts with PHR2, a central regulator of Pi signaling, and regulates its activity. This study identified two RING-finger ubiquitin E3 ligases, which promote the degradation of SPX4 and thus modulate PHR2 activity for Pi homeostasis and Pi signaling in response to external Pi availability in rice.
AbstractList SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice. SPX4, an internal Pi sensor, interacts with PHR2, a central regulator of Pi signaling, and regulates its activity. This study identified two RING-finger ubiquitin E3 ligases, which promote the degradation of SPX4 and thus modulate PHR2 activity for Pi homeostasis and Pi signaling in response to external Pi availability in rice.
SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.
SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.
SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K and K lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.
Author Xu, Zhuang
Wang, Xueqing
Ruan, Wenyuan
Guo, Zhenhui
Sun, Haiji
Xu, Lei
Zhao, Hongyu
Yan, Chengqi
Yi, Keke
Guo, Meina
Author_xml – sequence: 1
  givenname: Wenyuan
  surname: Ruan
  fullname: Ruan, Wenyuan
  organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 2
  givenname: Meina
  surname: Guo
  fullname: Guo, Meina
  organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 3
  givenname: Xueqing
  surname: Wang
  fullname: Wang, Xueqing
  organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 4
  givenname: Zhenhui
  surname: Guo
  fullname: Guo, Zhenhui
  organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 5
  givenname: Zhuang
  surname: Xu
  fullname: Xu, Zhuang
  organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 6
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 7
  givenname: Hongyu
  surname: Zhao
  fullname: Zhao, Hongyu
  organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 8
  givenname: Haiji
  surname: Sun
  fullname: Sun, Haiji
  organization: College of Life Science, Shandong Normal University, Jinan 250014, China
– sequence: 9
  givenname: Chengqi
  surname: Yan
  fullname: Yan, Chengqi
  organization: Ningbo Academy of Agriculture Sciences, 19 Dehou Street, Ningbo City 315000, China
– sequence: 10
  givenname: Keke
  surname: Yi
  fullname: Yi, Keke
  email: yikeke@gmail.com
  organization: Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31002982$$D View this record in MEDLINE/PubMed
BookMark eNqNkctq3DAUhk1JaS7tC3RRtOwidiVZ1sjQTch1YGjDTALdCVk-8miwpYkkt-Q98sD1dNJSughd6SC-7xz4_-PswHkHWfae4IJgwj9tisH324JiUheYFRiXr7IjMqtoXgs-O5hmPmM5xRU9zI5j3GDMseDlm-ywJBjTWtCj7Onuh0fL-Zfr_Mq6DgK6b-zDaJN16LJEC9upCBEtoRt7lQClNaAL6IJqVbLeIW_Q6vYbO0VnDs1dguBUj27XPm7XO3wFLvpwiowPf_3e-AF8TCraiJRr0cp2kzadR9PVpdXwNnttVB_h3fN7kt1fXd6d3-SLr9fz87NFrlldp7xqdCk4MRVuWCuAzXRrKKcVZg03jTGmrKqG8VqU2gioKyoYF1MyjAEndcnLk-zjfu82-IcRYpKDjRr6XjnwY5SUCl5jzgn5D5SQmjHC2YR-eEbHZoBWboMdVHiUv0OfALoHdPAxBjB_EILlrlm5kbtm5a5ZiZmcmp0k8Y-kbfpVQgrK9i-rn_cqTFl-txBk1BachtYG0Em23r6k_wSGXL1W
CitedBy_id crossref_primary_10_1093_jxb_erae434
crossref_primary_10_3389_fpls_2022_914648
crossref_primary_10_1093_jxb_erac258
crossref_primary_10_3390_ijms24054414
crossref_primary_10_1093_jxb_erac491
crossref_primary_10_1016_j_molp_2021_12_005
crossref_primary_10_3389_fpls_2022_867419
crossref_primary_10_1111_pce_14078
crossref_primary_10_1016_j_isci_2022_104242
crossref_primary_10_1016_j_jgg_2024_09_018
crossref_primary_10_1038_s41477_024_01682_3
crossref_primary_10_1093_plphys_kiac146
crossref_primary_10_1016_j_molp_2023_03_006
crossref_primary_10_3390_ijms23010158
crossref_primary_10_1016_j_molp_2020_12_005
crossref_primary_10_1016_j_molp_2022_12_002
crossref_primary_10_1111_ppl_14486
crossref_primary_10_1111_tpj_15193
crossref_primary_10_1016_j_tplants_2019_05_002
crossref_primary_10_1360_SSV_2023_0048
crossref_primary_10_1016_j_pbi_2020_07_002
crossref_primary_10_1111_nph_17973
crossref_primary_10_1111_tpj_15520
crossref_primary_10_1016_j_scienta_2022_111767
crossref_primary_10_1007_s11104_023_05976_x
crossref_primary_10_1111_tpj_15402
crossref_primary_10_3390_cells11071167
crossref_primary_10_3389_fpls_2024_1340867
crossref_primary_10_3390_biom11081145
crossref_primary_10_1038_s41467_020_20681_4
crossref_primary_10_1111_tpj_14637
crossref_primary_10_1021_acs_jafc_4c02621
crossref_primary_10_1111_nph_17139
crossref_primary_10_1186_s12284_025_00768_6
crossref_primary_10_1093_pcp_pcab010
crossref_primary_10_1093_pcp_pcab011
crossref_primary_10_1016_j_envexpbot_2021_104483
crossref_primary_10_1111_tpj_70106
crossref_primary_10_1007_s44154_024_00181_x
crossref_primary_10_1016_j_plantsci_2023_111618
crossref_primary_10_3390_ijms252010912
crossref_primary_10_1016_j_molp_2021_05_020
crossref_primary_10_1111_nph_19263
crossref_primary_10_3390_genes10121018
crossref_primary_10_1111_pce_14457
crossref_primary_10_3389_fpls_2022_917652
crossref_primary_10_1007_s11032_024_01508_2
crossref_primary_10_1007_s00344_023_11002_2
crossref_primary_10_1016_j_jplph_2021_153419
crossref_primary_10_1016_j_plantsci_2022_111257
crossref_primary_10_1016_j_plantsci_2025_112389
crossref_primary_10_1016_j_plaphy_2023_108215
crossref_primary_10_1042_BCJ20230163
crossref_primary_10_1111_nph_18933
crossref_primary_10_3389_fgene_2024_1469704
crossref_primary_10_1016_j_envexpbot_2023_105625
crossref_primary_10_2139_ssrn_3961281
crossref_primary_10_48130_forres_0024_0014
crossref_primary_10_1007_s11033_022_07354_9
crossref_primary_10_1016_j_molp_2023_09_012
crossref_primary_10_1111_nph_16102
crossref_primary_10_1111_nph_18963
crossref_primary_10_1111_nph_19579
crossref_primary_10_1016_j_indcrop_2023_117065
crossref_primary_10_1016_j_molp_2019_06_005
crossref_primary_10_1093_plphys_kiae495
crossref_primary_10_1016_j_jplph_2024_154317
crossref_primary_10_3390_ijms252212026
crossref_primary_10_1093_plcell_koac161
crossref_primary_10_1080_15592324_2019_1704528
crossref_primary_10_1007_s00299_021_02812_3
crossref_primary_10_1016_j_molp_2024_03_014
crossref_primary_10_1016_j_stress_2023_100207
crossref_primary_10_1152_physrev_00008_2019
crossref_primary_10_1016_j_envpol_2023_123009
crossref_primary_10_3390_plants10020246
crossref_primary_10_1093_plphys_kiab343
crossref_primary_10_1016_j_copbio_2024_103180
crossref_primary_10_1016_j_molp_2021_12_010
crossref_primary_10_1186_s40538_024_00648_z
crossref_primary_10_1007_s00344_021_10486_0
crossref_primary_10_1111_tpj_15061
crossref_primary_10_1016_j_plaphy_2023_108128
Cites_doi 10.1046/j.1365-313X.1994.6020271.x
10.1111/j.1365-313X.2004.02219.x
10.1104/pp.97.3.1087
10.1111/j.1469-8137.2012.04227.x
10.1186/s12284-017-0193-y
10.1371/journal.pgen.1006833
10.1371/journal.pone.0044005
10.1105/tpc.109.066605
10.1105/tpc.113.116012
10.1371/journal.pgen.1001102
10.1104/pp.111.181669
10.1104/pp.104.052423
10.1105/tpc.15.00321
10.1111/tpj.13516
10.1007/s11103-016-0564-6
10.1111/nph.15155
10.1371/journal.pgen.1002021
10.1104/pp.107.111443
10.1073/pnas.1404654111
10.1101/gad.204401
10.1038/s41477-019-0384-1
10.1016/j.febslet.2012.01.036
10.1038/461716a
10.1016/j.molp.2015.04.007
10.1105/tpc.112.096636
10.2113/GSELEMENTS.4.2.105
10.1038/nature06448
10.1111/j.1469-8137.2011.04002.x
10.1105/tpc.000745
10.1105/tpc.114.123208
10.1002/j.1460-2075.1987.tb02730.x
10.1111/j.1365-313X.2010.04170.x
10.1038/ncomms11095
10.1038/ncomms2479
10.1073/pnas.1514598112
10.1104/pp.15.00736
10.1093/jxb/ert424
10.1105/tpc.17.00845
10.1111/j.1365-3040.2008.01883.x
10.1016/j.copbio.2017.08.012
10.1111/j.1365-313X.2008.03460.x
10.1111/nph.14938
10.1039/C7MT00152E
10.1104/pp.111.184648
10.1093/aob/mct080
10.1093/mp/sst121
10.1073/pnas.1404680111
10.1126/science.aad9858
ContentType Journal Article
Copyright 2019 The Author
Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 The Author
– notice: Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.molp.2019.04.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1752-9867
EndPage 1074
ExternalDocumentID 31002982
10_1016_j_molp_2019_04_003
S1674205219301327
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--M
.2P
.I3
0R~
123
2WC
4.4
457
53G
6I.
7-5
70D
8P~
AABVA
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAIYJ
AAKOC
AALRI
AAOAW
AATLK
AAVLN
AAXUO
ABGRD
ABJNI
ABMAC
ABNKS
ABVKL
ABYKQ
ABZBJ
ACDAQ
ACGFS
ACPRK
ACRLP
ADBBV
ADEYI
ADEZE
ADFTL
ADOCK
ADZTZ
AEBSH
AEGPL
AEKER
AENEX
AEXQZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGKEF
AGUBO
AHMBA
AHXPO
AIEXJ
AIJHB
AIKHN
AITUG
AJOXV
AKHUL
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
CZ4
DU5
E3Z
EBS
EE~
EFJIC
EFLBG
EJD
ESX
F5P
F9B
FDB
FIRID
FYGXN
GBLVA
H5~
HW0
HZ~
IOX
IXB
KOM
M-Z
M41
M49
N9A
NU-
O9-
OAUVE
OK1
P2P
PQQKQ
Q1.
RCE
RD5
ROL
RW1
RXO
SPCBC
SSA
SSZ
T5K
TR2
W8F
X7H
~91
~G-
1RT
AAEDT
AAHBH
AAMRU
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFPUW
AGCQF
AGHFR
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
CKLRP
CW9
H13
O0~
OVD
SSH
TEORI
TGP
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c499t-5bc3861f50b4d8e47cdf262504b6fbfff355b46983cf8e952846886744e619363
IEDL.DBID IXB
ISSN 1674-2052
1752-9867
IngestDate Tue Aug 05 10:18:04 EDT 2025
Thu Jul 10 23:56:25 EDT 2025
Wed Feb 19 02:31:18 EST 2025
Tue Jul 01 01:40:48 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Fri Feb 23 02:27:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords ubiquitination
Pi signaling
Pi homeostasis
phosphate regulation network
rice
PHR2
SPX4
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-5bc3861f50b4d8e47cdf262504b6fbfff355b46983cf8e952846886744e619363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1674205219301327/pdf
PMID 31002982
PQID 2211944164
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2286906611
proquest_miscellaneous_2211944164
pubmed_primary_31002982
crossref_primary_10_1016_j_molp_2019_04_003
crossref_citationtrail_10_1016_j_molp_2019_04_003
elsevier_sciencedirect_doi_10_1016_j_molp_2019_04_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-05
PublicationDateYYYYMMDD 2019-08-05
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-05
  day: 05
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular plant
PublicationTitleAlternate Mol Plant
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ren, Guo, Chang, Chen, Zhao, Zhong, Li (bib32) 2012; 7
Liu, Cheng, Liu, Li, Chen, Gu, Sun (bib19) 2017; 13
Ruan, Guo, Wu, Yi (bib33) 2017; 93
Gilbert (bib6) 2009; 461
Zhong, Wang, Guo, Zhu, Shi, He, Liu, Wu, Zhang, Lv (bib50) 2018; 219
Liu, Wang, Ren, Shen, Li, Ling, Wu, Lian, Wu (bib18) 2010; 62
Poirier, Thoma, Somerville, Schiefelbein (bib30) 1991; 97
Puga, Mateos, Charukesi, Wang, Franco-Zorrilla, de Lorenzo, Irigoyen, Masiero, Bustos, Rodríguez (bib31) 2014; 111
Valdés-López, Arenas-Huertero, Ramírez, Girard, Sánchez, Vance, Luis Reyes, Hernández (bib40) 2008; 31
Kant, Peng, Rothstein (bib14) 2011; 7
Wang, Huang, Ying, Li, Secco, Tyerman, Whelan, Shou (bib42) 2012; 196
Mao, Zhang, Xu, Zhang, Gou, Zhu (bib26) 2013; 6
Marino, Froidure, Canonne, Ben Khaled, Khafif, Pouzet, Jauneau, Roby, Rivas (bib27) 2013; 4
Lv, Zhong, Wang, Wang, Zhang, Shi, Wu, Liu, Mao, Yi (bib23) 2014; 26
Bustos, Castrillo, Linhares, Puga, Rubio, Pérez-Pérez, Solano, Leyva, Paz-Ares (bib1) 2010; 6
Ye, Wang, Su, Wu, Chen (bib47) 2018; 30
Chen, Liu, Ni, Wang, Bai, Shi, Gan, Wu, Wu (bib2) 2011; 157
Wang, Sun, Miao, Guo, Shi, Chen, Zhao, Li, Han, Tong (bib43) 2013; 111
Wild, Gerasimaite, Jung, Truffault, Pavlovic, Schmidt, Saiardi, Jessen, Poirier, Hothorn (bib45) 2016; 352
Zhou, Jiao, Wu, Li, Wang, He, Zhong, Wu (bib51) 2008; 146
Shen, Liu, Song, Xie, Hanley-Bowdoin, Zhou (bib37) 2011; 157
Kirkby (bib15) 2012
Rubio, Linhares, Solano, Martín, Iglesias, Leyva, Paz-Ares (bib34) 2001; 15
Liu, Huang, Yang, Hong, Huang, Wang, Chiang, Tsai, Lu, Chiou (bib22) 2016; 7
Lin, Huang, Chiou (bib17) 2013; 25
Wang, Ruan, Shi, Zhang, Xiang, Yang, Li, Wu, Liu, Yu (bib44) 2014; 111
Ma, Zhang, Zhu, Liu, Chen, Qiu, Wang, Yang, Li, Lin (bib24) 2015; 8
Manning (bib25) 2008; 4
Jefferson, Kavanagh, Bevan (bib12) 1987; 6
Yue, Ying, Wang, Zhao, Dong, Whelan, Shou (bib49) 2017; 90
Feng, Martinez, Gusmaroli, Wang, Zhou, Wang, Chen, Yu, Iglesias-Pedraz, Kircher (bib5) 2008; 451
Hamburger, Rezzonico, MacDonald-Comber Petetot, Somerville, Poirier (bib8) 2002; 14
Hindt, Akmakjian, Pivarski, Punshon, Baxter, Salt, Guerinot (bib10) 2017; 9
Secco, Wang, Arpat, Wang, Poirier, Tyerman, Wu, Shou, Whelan (bib35) 2012; 193
Hiei, Otis, Komari, Kumashiro (bib9) 1994; 6
Guo, Ruan, Li, Huang, Zeng, Liu, Yu, Ding, Wu, Wu (bib7) 2015; 168
Yoshida, Forno, Cock, Gomez (bib48) 1976
Liu, Huang, Tseng, Lai, Lin, Lin, Chen, Chiou (bib21) 2012; 24
Secco, Wang, Shou, Whelan (bib36) 2012; 586
Stone, Hauksdóttir, Troy, Herschleb, Kraft, Callis (bib39) 2005; 137
Duan, Yi, Dang, Huang, Wu, Wu (bib4) 2008; 54
Ding, Zhang, Qin (bib3) 2015; 27
Walter, Chaban, Schütze, Batistic, Weckermann, Näke, Blazevic, Grefen, Schumacher, Oecking (bib41) 2004; 40
Liu, Yang, Luan, Wang, Zhang, Zhang, Shi, Zhao, Lan, Luan (bib20) 2015; 112
Hu, Jiang, Wang, Qiu, Zhang, Liu, Li, Gao, Liu, Qian (bib11) 2019; 5
Yang, Wang, Mao, Lin (bib46) 2017; 10
Jung, Ried, Hothorn, Poirier (bib13) 2018; 49
Lin, Lin, Chiang, Syu, Hsieh, Chiou (bib16) 2018; 217
Shi, Hu, Zhang, Zhang, Yu, Wu, Wu (bib38) 2014; 65
Morris, Thornber, Codrai, Richardson, Craig, Sadanandom, Thomas, Jackson (bib28) 2010; 22
Neumann, Römheld (bib29) 2012
Wang (10.1016/j.molp.2019.04.003_bib42) 2012; 196
Ding (10.1016/j.molp.2019.04.003_bib3) 2015; 27
Ruan (10.1016/j.molp.2019.04.003_bib33) 2017; 93
Morris (10.1016/j.molp.2019.04.003_bib28) 2010; 22
Ma (10.1016/j.molp.2019.04.003_bib24) 2015; 8
Secco (10.1016/j.molp.2019.04.003_bib36) 2012; 586
Jefferson (10.1016/j.molp.2019.04.003_bib12) 1987; 6
Lin (10.1016/j.molp.2019.04.003_bib16) 2018; 217
Mao (10.1016/j.molp.2019.04.003_bib26) 2013; 6
Liu (10.1016/j.molp.2019.04.003_bib20) 2015; 112
Lv (10.1016/j.molp.2019.04.003_bib23) 2014; 26
Liu (10.1016/j.molp.2019.04.003_bib18) 2010; 62
Kirkby (10.1016/j.molp.2019.04.003_bib15) 2012
Bustos (10.1016/j.molp.2019.04.003_bib1) 2010; 6
Secco (10.1016/j.molp.2019.04.003_bib35) 2012; 193
Ren (10.1016/j.molp.2019.04.003_bib32) 2012; 7
Liu (10.1016/j.molp.2019.04.003_bib22) 2016; 7
Walter (10.1016/j.molp.2019.04.003_bib41) 2004; 40
Chen (10.1016/j.molp.2019.04.003_bib2) 2011; 157
Hu (10.1016/j.molp.2019.04.003_bib11) 2019; 5
Wang (10.1016/j.molp.2019.04.003_bib43) 2013; 111
Puga (10.1016/j.molp.2019.04.003_bib31) 2014; 111
Yang (10.1016/j.molp.2019.04.003_bib46) 2017; 10
Hamburger (10.1016/j.molp.2019.04.003_bib8) 2002; 14
Lin (10.1016/j.molp.2019.04.003_bib17) 2013; 25
Hindt (10.1016/j.molp.2019.04.003_bib10) 2017; 9
Liu (10.1016/j.molp.2019.04.003_bib21) 2012; 24
Jung (10.1016/j.molp.2019.04.003_bib13) 2018; 49
Yue (10.1016/j.molp.2019.04.003_bib49) 2017; 90
Kant (10.1016/j.molp.2019.04.003_bib14) 2011; 7
Marino (10.1016/j.molp.2019.04.003_bib27) 2013; 4
Duan (10.1016/j.molp.2019.04.003_bib4) 2008; 54
Zhong (10.1016/j.molp.2019.04.003_bib50) 2018; 219
Gilbert (10.1016/j.molp.2019.04.003_bib6) 2009; 461
Shen (10.1016/j.molp.2019.04.003_bib37) 2011; 157
Stone (10.1016/j.molp.2019.04.003_bib39) 2005; 137
Zhou (10.1016/j.molp.2019.04.003_bib51) 2008; 146
Hiei (10.1016/j.molp.2019.04.003_bib9) 1994; 6
Ye (10.1016/j.molp.2019.04.003_bib47) 2018; 30
Wild (10.1016/j.molp.2019.04.003_bib45) 2016; 352
Feng (10.1016/j.molp.2019.04.003_bib5) 2008; 451
Wang (10.1016/j.molp.2019.04.003_bib44) 2014; 111
Poirier (10.1016/j.molp.2019.04.003_bib30) 1991; 97
Shi (10.1016/j.molp.2019.04.003_bib38) 2014; 65
Guo (10.1016/j.molp.2019.04.003_bib7) 2015; 168
Neumann (10.1016/j.molp.2019.04.003_bib29) 2012
Manning (10.1016/j.molp.2019.04.003_bib25) 2008; 4
Valdés-López (10.1016/j.molp.2019.04.003_bib40) 2008; 31
Liu (10.1016/j.molp.2019.04.003_bib19) 2017; 13
Rubio (10.1016/j.molp.2019.04.003_bib34) 2001; 15
Yoshida (10.1016/j.molp.2019.04.003_bib48) 1976
References_xml – volume: 25
  start-page: 4061
  year: 2013
  end-page: 4074
  ident: bib17
  article-title: Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in
  publication-title: Plant Cell
– volume: 352
  start-page: 986
  year: 2016
  end-page: 990
  ident: bib45
  article-title: Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains
  publication-title: Science
– start-page: 3
  year: 2012
  end-page: 5
  ident: bib15
  article-title: Introduction, definition and classification of nutrients
  publication-title: Marschner’s Mineral Nutrition of Higher Plants
– volume: 5
  start-page: 401
  year: 2019
  end-page: 413
  ident: bib11
  article-title: Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants
  publication-title: Nat. Plants
– volume: 90
  start-page: 1040
  year: 2017
  end-page: 1051
  ident: bib49
  article-title: OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in
  publication-title: Plant J.
– volume: 6
  start-page: 3901
  year: 1987
  end-page: 3907
  ident: bib12
  article-title: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants
  publication-title: EMBO J.
– volume: 40
  start-page: 428
  year: 2004
  end-page: 438
  ident: bib41
  article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation
  publication-title: Plant J.
– volume: 6
  start-page: e1001102
  year: 2010
  ident: bib1
  article-title: A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in
  publication-title: PLoS Genet.
– volume: 6
  start-page: 271
  year: 1994
  end-page: 282
  ident: bib9
  article-title: Efficient transformation of rice (
  publication-title: Plant J.
– volume: 31
  start-page: 1834
  year: 2008
  end-page: 1843
  ident: bib40
  article-title: Essential role of MYB transcription factor: PvPHR1 and microRNA:
  publication-title: Plant Cell Environ.
– volume: 22
  start-page: 1118
  year: 2010
  end-page: 1128
  ident: bib28
  article-title: DAY NEUTRAL FLOWERING represses CONSTANS to prevent arabidopsis flowering early in short days
  publication-title: Plant Cell.
– volume: 65
  start-page: 859
  year: 2014
  end-page: 870
  ident: bib38
  article-title: The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice
  publication-title: J. Exp. Bot.
– volume: 26
  start-page: 1586
  year: 2014
  end-page: 1597
  ident: bib23
  article-title: SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice
  publication-title: Plant Cell
– volume: 111
  start-page: 14947
  year: 2014
  end-page: 14952
  ident: bib31
  article-title: SPX1 is a phosphate-dependent inhibitor of phosphate starvation response 1 in
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 15
  start-page: 2122
  year: 2001
  end-page: 2133
  ident: bib34
  article-title: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae
  publication-title: Genes Dev.
– volume: 193
  start-page: 842
  year: 2012
  end-page: 851
  ident: bib35
  article-title: The emerging importance of the SPX domain-containing proteins in phosphate homeostasis
  publication-title: New Phytol.
– volume: 196
  start-page: 139
  year: 2012
  end-page: 148
  ident: bib42
  article-title: Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves
  publication-title: New Phytol.
– volume: 219
  start-page: 135
  year: 2018
  end-page: 148
  ident: bib50
  article-title: Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2
  publication-title: New Phytol.
– volume: 8
  start-page: 1274
  year: 2015
  end-page: 1284
  ident: bib24
  article-title: A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants
  publication-title: Mol. Plant
– volume: 157
  start-page: 269
  year: 2011
  end-page: 278
  ident: bib2
  article-title: OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in Rice
  publication-title: Plant Physiol.
– volume: 7
  start-page: e1002021
  year: 2011
  ident: bib14
  article-title: Genetic regulation by NLA and MicroRNA827 for maintaining nitrate-dependent phosphate homeostasis in
  publication-title: PLoS Genet.
– volume: 93
  start-page: 327
  year: 2017
  end-page: 340
  ident: bib33
  article-title: Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice
  publication-title: Plant Mol. Biol.
– volume: 7
  start-page: e44005
  year: 2012
  ident: bib32
  article-title: Brassica napus PHR1 gene encoding a MYB-like protein function in response to phosphate starvation
  publication-title: PLoS One
– volume: 586
  start-page: 289
  year: 2012
  end-page: 298
  ident: bib36
  article-title: Phosphate homeostasis in the yeast
  publication-title: FEBS Lett.
– volume: 13
  start-page: e1006833
  year: 2017
  ident: bib19
  article-title: MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in
  publication-title: PLoS Genet.
– volume: 451
  start-page: 475
  year: 2008
  end-page: 479
  ident: bib5
  article-title: Coordinated regulation of
  publication-title: Nature
– volume: 24
  start-page: 2168
  year: 2012
  end-page: 2183
  ident: bib21
  article-title: PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in
  publication-title: Plant Cell
– volume: 30
  start-page: 1062
  year: 2018
  end-page: 1076
  ident: bib47
  article-title: The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-Pi stress in
  publication-title: Plant Cell.
– volume: 157
  start-page: 1394
  year: 2011
  end-page: 1406
  ident: bib37
  article-title: Tomato SlSnRK1 protein interacts with and phosphorylates bC1, a pathogenesis protein encoded by a geminivirus b-satellite
  publication-title: Plant Physiol.
– volume: 49
  start-page: 156
  year: 2018
  end-page: 162
  ident: bib13
  article-title: Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain
  publication-title: Curr. Opin. Biotechnol.
– volume: 112
  start-page: E6571
  year: 2015
  end-page: E6578
  ident: bib20
  article-title: A vacuolar phosphate transporter essential for phosphate homeostasis in
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 62
  start-page: 508
  year: 2010
  end-page: 517
  ident: bib18
  article-title: OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice
  publication-title: Plant J.
– volume: 27
  start-page: 3228
  year: 2015
  end-page: 3244
  ident: bib3
  article-title: RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation
  publication-title: Plant Cell
– volume: 168
  start-page: 762
  year: 2015
  end-page: 776
  ident: bib7
  article-title: Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice
  publication-title: Plant Physiol.
– volume: 4
  start-page: 105
  year: 2008
  end-page: 108
  ident: bib25
  article-title: Phosphate minerals, environmental pollution and sustainable agriculture
  publication-title: Elements
– volume: 146
  start-page: 1673
  year: 2008
  end-page: 1686
  ident: bib51
  article-title: OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants
  publication-title: Plant Physiol.
– year: 1976
  ident: bib48
  article-title: Laboratory Manual for Physiological Studies of Rice
– volume: 97
  start-page: 1087
  year: 1991
  end-page: 1093
  ident: bib30
  article-title: Mutant of
  publication-title: Plant Physiol.
– volume: 137
  start-page: 13
  year: 2005
  end-page: 30
  ident: bib39
  article-title: Functional analysis of the RING-type ubiquitin ligase family of
  publication-title: Plant Physiol.
– volume: 217
  start-page: 1712
  year: 2018
  end-page: 1725
  ident: bib16
  article-title: Evolution of
  publication-title: New Phytol.
– volume: 461
  start-page: 716
  year: 2009
  end-page: 718
  ident: bib6
  article-title: Environment: the disappearing nutrient
  publication-title: Nature
– volume: 111
  start-page: 14953
  year: 2014
  end-page: 14958
  ident: bib44
  article-title: Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 6
  start-page: 2008
  year: 2013
  end-page: 2011
  ident: bib26
  article-title: Application of the CRISPR-Cas system for efficient genome engineering in plants
  publication-title: Mol. Plant
– volume: 4
  start-page: 1476
  year: 2013
  ident: bib27
  article-title: ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence
  publication-title: Nat. Commun.
– start-page: 347
  year: 2012
  end-page: 368
  ident: bib29
  article-title: Rhizosphere chemistry in relation to plant nutrition
  publication-title: Marschner’s Mineral Nutrition of Higher Plants
– volume: 111
  start-page: 1139
  year: 2013
  end-page: 1153
  ident: bib43
  article-title: A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signaling and increases grain yield in wheat
  publication-title: Ann. Bot. (Lond).
– volume: 7
  start-page: 11095
  year: 2016
  ident: bib22
  article-title: Identification of plant vacuolar transporters mediating phosphate storage
  publication-title: Nat. Commun.
– volume: 54
  start-page: 965
  year: 2008
  end-page: 975
  ident: bib4
  article-title: Characterization of a sub-family of
  publication-title: Plant J.
– volume: 14
  start-page: 889
  year: 2002
  end-page: 902
  ident: bib8
  article-title: Identification and characterization of the
  publication-title: Plant Cell
– volume: 9
  start-page: 876
  year: 2017
  end-page: 890
  ident: bib10
  article-title: BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in
  publication-title: Metallomics
– volume: 10
  start-page: 52
  year: 2017
  ident: bib46
  article-title: Characterization of the rice NLA family reveals a key role for OsNLA1 in phosphate homeostasis
  publication-title: Rice (N. Y).
– volume: 6
  start-page: 271
  year: 1994
  ident: 10.1016/j.molp.2019.04.003_bib9
  article-title: Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1994.6020271.x
– volume: 40
  start-page: 428
  year: 2004
  ident: 10.1016/j.molp.2019.04.003_bib41
  article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02219.x
– volume: 97
  start-page: 1087
  year: 1991
  ident: 10.1016/j.molp.2019.04.003_bib30
  article-title: Mutant of Arabidopsis deficient in xylem loading of phosphate
  publication-title: Plant Physiol.
  doi: 10.1104/pp.97.3.1087
– volume: 196
  start-page: 139
  year: 2012
  ident: 10.1016/j.molp.2019.04.003_bib42
  article-title: Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04227.x
– volume: 10
  start-page: 52
  year: 2017
  ident: 10.1016/j.molp.2019.04.003_bib46
  article-title: Characterization of the rice NLA family reveals a key role for OsNLA1 in phosphate homeostasis
  publication-title: Rice (N. Y).
  doi: 10.1186/s12284-017-0193-y
– start-page: 347
  year: 2012
  ident: 10.1016/j.molp.2019.04.003_bib29
  article-title: Rhizosphere chemistry in relation to plant nutrition
– volume: 13
  start-page: e1006833
  year: 2017
  ident: 10.1016/j.molp.2019.04.003_bib19
  article-title: MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006833
– volume: 7
  start-page: e44005
  year: 2012
  ident: 10.1016/j.molp.2019.04.003_bib32
  article-title: Brassica napus PHR1 gene encoding a MYB-like protein function in response to phosphate starvation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044005
– volume: 22
  start-page: 1118
  year: 2010
  ident: 10.1016/j.molp.2019.04.003_bib28
  article-title: DAY NEUTRAL FLOWERING represses CONSTANS to prevent arabidopsis flowering early in short days
  publication-title: Plant Cell.
  doi: 10.1105/tpc.109.066605
– volume: 25
  start-page: 4061
  year: 2013
  ident: 10.1016/j.molp.2019.04.003_bib17
  article-title: Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.116012
– volume: 6
  start-page: e1001102
  year: 2010
  ident: 10.1016/j.molp.2019.04.003_bib1
  article-title: A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001102
– volume: 157
  start-page: 269
  year: 2011
  ident: 10.1016/j.molp.2019.04.003_bib2
  article-title: OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in Rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.181669
– volume: 137
  start-page: 13
  year: 2005
  ident: 10.1016/j.molp.2019.04.003_bib39
  article-title: Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.052423
– volume: 27
  start-page: 3228
  year: 2015
  ident: 10.1016/j.molp.2019.04.003_bib3
  article-title: Arabidopsis RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00321
– volume: 90
  start-page: 1040
  year: 2017
  ident: 10.1016/j.molp.2019.04.003_bib49
  article-title: OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters
  publication-title: Plant J.
  doi: 10.1111/tpj.13516
– volume: 93
  start-page: 327
  year: 2017
  ident: 10.1016/j.molp.2019.04.003_bib33
  article-title: Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-016-0564-6
– volume: 219
  start-page: 135
  year: 2018
  ident: 10.1016/j.molp.2019.04.003_bib50
  article-title: Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2
  publication-title: New Phytol.
  doi: 10.1111/nph.15155
– volume: 7
  start-page: e1002021
  year: 2011
  ident: 10.1016/j.molp.2019.04.003_bib14
  article-title: Genetic regulation by NLA and MicroRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002021
– volume: 146
  start-page: 1673
  year: 2008
  ident: 10.1016/j.molp.2019.04.003_bib51
  article-title: OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.111443
– volume: 111
  start-page: 14947
  year: 2014
  ident: 10.1016/j.molp.2019.04.003_bib31
  article-title: SPX1 is a phosphate-dependent inhibitor of phosphate starvation response 1 in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1404654111
– volume: 15
  start-page: 2122
  year: 2001
  ident: 10.1016/j.molp.2019.04.003_bib34
  article-title: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae
  publication-title: Genes Dev.
  doi: 10.1101/gad.204401
– volume: 5
  start-page: 401
  year: 2019
  ident: 10.1016/j.molp.2019.04.003_bib11
  article-title: Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0384-1
– volume: 586
  start-page: 289
  year: 2012
  ident: 10.1016/j.molp.2019.04.003_bib36
  article-title: Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.01.036
– volume: 461
  start-page: 716
  year: 2009
  ident: 10.1016/j.molp.2019.04.003_bib6
  article-title: Environment: the disappearing nutrient
  publication-title: Nature
  doi: 10.1038/461716a
– volume: 8
  start-page: 1274
  year: 2015
  ident: 10.1016/j.molp.2019.04.003_bib24
  article-title: A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2015.04.007
– volume: 24
  start-page: 2168
  year: 2012
  ident: 10.1016/j.molp.2019.04.003_bib21
  article-title: PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.096636
– volume: 4
  start-page: 105
  year: 2008
  ident: 10.1016/j.molp.2019.04.003_bib25
  article-title: Phosphate minerals, environmental pollution and sustainable agriculture
  publication-title: Elements
  doi: 10.2113/GSELEMENTS.4.2.105
– volume: 451
  start-page: 475
  year: 2008
  ident: 10.1016/j.molp.2019.04.003_bib5
  article-title: Coordinated regulation of Arabidopsis thaliana development by light and gibberellins
  publication-title: Nature
  doi: 10.1038/nature06448
– volume: 193
  start-page: 842
  year: 2012
  ident: 10.1016/j.molp.2019.04.003_bib35
  article-title: The emerging importance of the SPX domain-containing proteins in phosphate homeostasis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.04002.x
– volume: 14
  start-page: 889
  year: 2002
  ident: 10.1016/j.molp.2019.04.003_bib8
  article-title: Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem
  publication-title: Plant Cell
  doi: 10.1105/tpc.000745
– volume: 26
  start-page: 1586
  year: 2014
  ident: 10.1016/j.molp.2019.04.003_bib23
  article-title: SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.123208
– volume: 6
  start-page: 3901
  year: 1987
  ident: 10.1016/j.molp.2019.04.003_bib12
  article-title: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1987.tb02730.x
– volume: 62
  start-page: 508
  year: 2010
  ident: 10.1016/j.molp.2019.04.003_bib18
  article-title: OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04170.x
– volume: 7
  start-page: 11095
  year: 2016
  ident: 10.1016/j.molp.2019.04.003_bib22
  article-title: Identification of plant vacuolar transporters mediating phosphate storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11095
– volume: 4
  start-page: 1476
  year: 2013
  ident: 10.1016/j.molp.2019.04.003_bib27
  article-title: Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2479
– volume: 112
  start-page: E6571
  year: 2015
  ident: 10.1016/j.molp.2019.04.003_bib20
  article-title: A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1514598112
– volume: 168
  start-page: 762
  year: 2015
  ident: 10.1016/j.molp.2019.04.003_bib7
  article-title: Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00736
– volume: 65
  start-page: 859
  year: 2014
  ident: 10.1016/j.molp.2019.04.003_bib38
  article-title: The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert424
– volume: 30
  start-page: 1062
  year: 2018
  ident: 10.1016/j.molp.2019.04.003_bib47
  article-title: The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-Pi stress in Arabidopsis
  publication-title: Plant Cell.
  doi: 10.1105/tpc.17.00845
– volume: 31
  start-page: 1834
  year: 2008
  ident: 10.1016/j.molp.2019.04.003_bib40
  article-title: Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signaling in common bean roots
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2008.01883.x
– year: 1976
  ident: 10.1016/j.molp.2019.04.003_bib48
– volume: 49
  start-page: 156
  year: 2018
  ident: 10.1016/j.molp.2019.04.003_bib13
  article-title: Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.08.012
– volume: 54
  start-page: 965
  year: 2008
  ident: 10.1016/j.molp.2019.04.003_bib4
  article-title: Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03460.x
– volume: 217
  start-page: 1712
  year: 2018
  ident: 10.1016/j.molp.2019.04.003_bib16
  article-title: Evolution of microRNA827 targeting in the plant kingdom
  publication-title: New Phytol.
  doi: 10.1111/nph.14938
– volume: 9
  start-page: 876
  year: 2017
  ident: 10.1016/j.molp.2019.04.003_bib10
  article-title: BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana
  publication-title: Metallomics
  doi: 10.1039/C7MT00152E
– volume: 157
  start-page: 1394
  year: 2011
  ident: 10.1016/j.molp.2019.04.003_bib37
  article-title: Tomato SlSnRK1 protein interacts with and phosphorylates bC1, a pathogenesis protein encoded by a geminivirus b-satellite
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.184648
– volume: 111
  start-page: 1139
  year: 2013
  ident: 10.1016/j.molp.2019.04.003_bib43
  article-title: A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signaling and increases grain yield in wheat
  publication-title: Ann. Bot. (Lond).
  doi: 10.1093/aob/mct080
– volume: 6
  start-page: 2008
  year: 2013
  ident: 10.1016/j.molp.2019.04.003_bib26
  article-title: Application of the CRISPR-Cas system for efficient genome engineering in plants
  publication-title: Mol. Plant
  doi: 10.1093/mp/sst121
– start-page: 3
  year: 2012
  ident: 10.1016/j.molp.2019.04.003_bib15
  article-title: Introduction, definition and classification of nutrients
– volume: 111
  start-page: 14953
  year: 2014
  ident: 10.1016/j.molp.2019.04.003_bib44
  article-title: Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1404680111
– volume: 352
  start-page: 986
  year: 2016
  ident: 10.1016/j.molp.2019.04.003_bib45
  article-title: Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains
  publication-title: Science
  doi: 10.1126/science.aad9858
SSID ssj0060863
Score 2.5352647
Snippet SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are...
SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1060
SubjectTerms cytoplasm
enzyme activity
eukaryotic cells
Gene Expression Regulation, Plant - genetics
Homeostasis
loss-of-function mutation
lysine
mutants
Oryza - genetics
phosphate regulation network
phosphates
PHR2
Pi homeostasis
Pi signaling
Plant Proteins - genetics
Plant Proteins - metabolism
rice
SPX4
two hybrid system techniques
ubiquitin
ubiquitin-protein ligase
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
ubiquitination
Ubiquitination - genetics
Ubiquitination - physiology
Title Two RING-Finger Ubiquitin E3 Ligases Regulate the Degradation of SPX4, An Internal Phosphate Sensor, for Phosphate Homeostasis and Signaling in Rice
URI https://dx.doi.org/10.1016/j.molp.2019.04.003
https://www.ncbi.nlm.nih.gov/pubmed/31002982
https://www.proquest.com/docview/2211944164
https://www.proquest.com/docview/2286906611
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemwQMvaHx3wGQk3ljUxnYc57ErqwqMqWpXqW9WnNhdUInL0grt_9gfzF0-JhCiDzxFic6K5Yvvfhff_Y6Q9zFTlgMQD7hgGKAMBkGaJTLIeB4nzFgbGixO_nopJwvxeRktD8ioq4XBtMrW9jc2vbbW7ZN-u5r9TVH055g_z7D2NOF4YIAV5VyouohvedZZYwmQvU6yB-EApdvCmSbH67tfI2dlmNR0p13jrL-d07_AZ-2ExkfkcYse6bCZ4BNyYMun5OGZB4R3-4zcXf30FLMbgnH9s44uTPFjV2yLkp5zelGswGNVdNZ0n7cUoB_9iFwRTVsl6h2dT5filA5L2v4oXNPpta821yg-h4DX35xSQLm_PcU26x4QZlVUNC1zOi9WCO3LFYW3zsAKPSeL8fnVaBK0XReCDKKfbRCZjCsZumhgRK6siLPcMYlMZ0Y645wDhGKw7yTPnLJJBP5NKgXLKywEY1zyF-Sw9KV9RWjOU2XjOGUYt6nQmZQJB0pIEwiNrRA9EnbLrbOWkhw7Y6x1l3v2TaOKNKpIDwQSmfbIh_sxm4aQY6901GlR__FZafAYe8e961SuYb_hIUpaWr-rNENKPMCQUuyTwT5fgHzCHnnZfC_3c8UDFZYodvyfM3tNHuFdnYMYvSGH25udfQu4aGtOyIPhaHYxxeunL5PLk3oj_AJJqAuX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKQYIL4k14DhKc6CpZ2_s6cGhpo4SmVdUkUm7uetdOF4Xd0E1U9X_wT_iDzOyjAiFyQOrVO15bHnvmG3sejL0PeGgEAnFHSE4GSq_nxEnkO4lIg4hrY1xNwclHx_5gKr_MvNkW-9nGwpBbZSP7a5leSeumpdusZneZZd0x-c9zij2NBD0YBI1n5aG5ukS7rfw03Ecmf-C8fzD5PHCa0gJOghB_5Xg6EaHvWq-nZRoaGSSp5T6l89K-1dZaVMOaiiuKxIYm8lCI-2GIA0qDFofwBf73FruN6CMgaTCc7bXi30cbofLqR2KHptdE6tROZd-KBSXJdKMqv2pbqetvbfgvtFtpvf4Ddr-Bq7Bbr8hDtmXyR-zOXoGQ8uox-zG5LIDcKZx-dTsIU519X2erLIcDAaNsjiqyhNO63L0BxJqwT8kp6jpOUFgYn8zkDuzm0NxMLuDkvCiX50Q-Rgu7uNgBhNW_tVJd9wIhbZmVEOcpjLM52RL5HHDUUxR7T9j0RnjxlG3nRW6eM0hFHJogiDkZiqFrdcylRSbEEdriRsoOc9vlVkmTA51KcSxU6-z2VRGLFLFI9SRlTu2wj9d9lnUGkI3UXstF9cc-VqiiNvZ717Jc4QGnV5s4N8W6VJxy8CFo9eUmGioshlDL7bBn9X65niu94PAo5C_-c2Zv2d3B5GikRsPjw5fsHn2pHCC9V2x7dbE2rxGUrfSb6hAAO7vpU_cLT81EXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+RING-Finger+Ubiquitin+E3+Ligases+Regulate+the+Degradation+of+SPX4%2C+An+Internal+Phosphate+Sensor%2C+for+Phosphate+Homeostasis+and+Signaling+in+Rice&rft.jtitle=Molecular+plant&rft.au=Ruan%2C+Wenyuan&rft.au=Guo%2C+Meina&rft.au=Wang%2C+Xueqing&rft.au=Guo%2C+Zhenhui&rft.date=2019-08-05&rft.pub=Elsevier+Inc&rft.issn=1674-2052&rft.eissn=1752-9867&rft.volume=12&rft.issue=8&rft.spage=1060&rft.epage=1074&rft_id=info:doi/10.1016%2Fj.molp.2019.04.003&rft.externalDocID=S1674205219301327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2052&client=summon