Moesin Regulates the Trafficking of Nascent Clathrin-coated Vesicles
Clathrin-coated vesicles are responsible for the trafficking of several internalized biological cargos. We have observed that the endogenous F-actin-linker moesin co-distributes with constitutive components of clathrin-coated structures. Total internal reflection fluorescence microscopy studies have...
Saved in:
Published in | The Journal of biological chemistry Vol. 284; no. 4; pp. 2419 - 2434 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
23.01.2009
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Clathrin-coated vesicles are responsible for the trafficking of several internalized biological cargos. We have observed that the endogenous F-actin-linker moesin co-distributes with constitutive components of clathrin-coated structures. Total internal reflection fluorescence microscopy studies have shown that short interference RNA of moesin enhances the lateral movement of clathrin-coated structures and provokes their abnormal clustering. The aggregation of clathrin-coated structures has also been observed in cells overexpressing N-moesin, a dominant-negative construct unable to bind to F-actin. Only overexpressed moesin constructs with an intact phosphatidylinositol 4,5-bisphosphate-binding domain co-distribute with clathrin-coated structures. Hence, this N-terminal domain is mostly responsible for moesin/clathrin-coated structure association. Biochemical endosome fractioning together with total internal reflection fluorescence microscopy comparative studies, between intact cells and plasma-membrane sheets, indicate that moesin knockdown provokes the accumulation of endocytic rab5-clathrin-coated vesicles carrying the transferrin receptor. The altered trafficking of these endocytic rab5-clathrin-coated vesicles accounts for a transferrin receptor recycling defect that reduces cell-surface expression of the transferrin receptor and increases the amount of sequestered transferrin ligand. Therefore, we propose that moesin is a clathrin-coated vesicle linker that drives cargo trafficking and acts on nascent rab5-clathrin-coated vesicles by simultaneously binding to clathrin-coated vesicle-associated phosphatidylinositol 4,5-bisphosphate and actin cytoskeleton. Hence, functional alterations of moesin may be involved in pathological disorders associated with clathrin-mediated internalization or receptor recycling. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M805311200 |