Predicting field capacity, wilting point, and the other physical properties of soils using hyperspectral reflectance spectroscopy: two different statistical approaches

In this study, we examined the ability of reflectance spectroscopy to predict some of the most important soil parameters for irrigation such as field capacity (FC), wilting point (WP), clay, sand, and silt content. FC and WP were determined for 305 soil samples. In addition to these soil analyses, c...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental monitoring and assessment Vol. 186; no. 8; pp. 5077 - 5088
Main Authors Arslan, Hakan, Tasan, Mehmet, Yildirim, Demet, Koksal, Eyüp Selim, Cemek, Bilal
Format Journal Article
LanguageEnglish
Published Cham Springer-Verlag 01.08.2014
Springer International Publishing
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, we examined the ability of reflectance spectroscopy to predict some of the most important soil parameters for irrigation such as field capacity (FC), wilting point (WP), clay, sand, and silt content. FC and WP were determined for 305 soil samples. In addition to these soil analyses, clay, silt, and sand contents of 145 soil samples were detected. Raw spectral reflectance (raw) of these soil samples, between 350 and 2,500-nm wavelengths, was measured. In addition, first order derivatives of the reflectance (first) were calculated. Two different statistical approaches were used in detecting soil properties from hyperspectral data. Models were evaluated using the correlation of coefficient (r), coefficient of determination (R ²), root mean square error (RMSE), and residual prediction deviation (RPD). In the first method, two appropriate wavelengths were selected for raw reflectance and first derivative separately for each soil property. Selection of wavelengths was carried out based on the highest positive and negative correlations between soil property and raw reflectance or first order derivatives. By means of detected wavelengths, new combinations for each soil property were calculated using rationing, differencing, normalized differencing, and multiple regression techniques. Of these techniques, multiple regression provided the best correlation (P < 0.01) for selected wavelengths and all soil properties. To estimate FC, WP, clay, sand, and silt, multiple regression equations based on first(2,310)-first(2,360), first(2,310)-first(2,360), first(2,240)-first(1,320), first(2,240)-first(1,330), and raw(2,260)-raw(360) were used. Partial least square regression (PLSR) was performed as the second method. Raw reflectance was a better predictor of WP and FC, whereas first order derivative was a better predictor of clay, sand, and silt content. According to RPD values, statistically excellent predictions were obtained for FC (2.18), and estimations for WP (2.0), clay (1.8), and silt (1.63) were acceptable. However, sand values were poorly predicted (RDP = 0.63). In conclusion, both of the methods examined here offer quick and inexpensive means of predicting soil properties using spectral reflectance data.
Bibliography:http://dx.doi.org/10.1007/s10661-014-3761-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-014-3761-2