Purification and mode of action of two different arabinoxylan arabinofuranohydrolases from Bifidobacterium adolescentis DSM 20083
Two novel arabinofuranohydrolases (AXH-d3 and AXH-m23) were purified from Bifidobacterium adolescentis DSM 20083. Both enzymes were induced upon growth of Bi. adolescentis on xylose and arabinoxylan-derived oligosaccharides. They were only active with arabinoxylans and therefore denoted as arabinoxy...
Saved in:
Published in | Applied microbiology and biotechnology Vol. 51; no. 5; pp. 606 - 613 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Springer
1999
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Two novel arabinofuranohydrolases (AXH-d3 and AXH-m23) were purified from Bifidobacterium adolescentis DSM 20083. Both enzymes were induced upon growth of Bi. adolescentis on xylose and arabinoxylan-derived oligosaccharides. They were only active with arabinoxylans and therefore denoted as arabinoxylan arabinofuranohydrolases. Their optimal activity was at pH 6 and 30-40 degrees C. They were very specific in their mode of action and were clearly different from AXH-m from Aspergillus awamori. AXH-m23 released only arabinosyl groups, which were linked to the C-2 or C-3 position of singly substituted xylose residues in arabinoxylan oligomers. AXH-d3 hydrolysed C-3-linked arabinofuranosyl residues of doubly substituted xylopyranosyl residues of arabinoxylans and arabinoxylan-derived oligosaccharides. No activity was observed with C-2-linked arabinofuranosyl residues of these doubly substituted xylopyranosyl residues, or against C-2- and C-3-linked arabinofuranosyl residues of singly substituted xylopyranosyl residues. The combination of AXH-d3 and AXH-m showed low debranching activity with highly substituted glucuronoarabinoxylans. However, arabinoxylan from wheat flour was debranched almost completely. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s002530051439 |