Proliferation of Human Primary Myoblasts Is Associated with Altered Energy Metabolism in Dependence on Ageing In Vivo and In Vitro
Background. Ageing is associated with suppressed regenerative potential of muscle precursor cells due to decrease of satellite cells and suppressive intramuscular milieu on their activation, associated with ageing-related low-grade inflammation. The aim of the study was to characterize the function...
Saved in:
Published in | Oxidative medicine and cellular longevity Vol. 2016; no. 2016; pp. 1 - 10 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2016
John Wiley & Sons, Inc Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background. Ageing is associated with suppressed regenerative potential of muscle precursor cells due to decrease of satellite cells and suppressive intramuscular milieu on their activation, associated with ageing-related low-grade inflammation. The aim of the study was to characterize the function of oxidative phosphorylation (OXPHOS), glycolysis, adenylate kinase (AK), and creatine kinase (CK) mediated systems in young and older individuals. Materials and Methods. Myoblasts were cultivated from biopsies taken by transcutaneous conchotomy from vastus lateralis muscle in young (20–29 yrs, n=7) and older (70–79 yrs, n=7) subjects. Energy metabolism was assessed in passages 2 to 6 by oxygraphy and enzyme analysis. Results. In myoblasts of young and older subjects the rate of OXPHOS decreased during proliferation from passages 2 to 6. The total activities of CK and AK decreased. Myoblasts of passage 2 cultivated from young muscle showed higher rate of OXPHOS and activities of CK and AK compared to myoblasts from older subjects while hexokinase and pyruvate kinase were not affected by ageing. Conclusions. Proliferation of myoblasts in vitro is associated with downregulation of OXPHOS and energy storage and transfer systems. Ageing in vivo exerts an impact on satellite cells which results in altered metabolic profile in favour of the prevalence of glycolytic pathways over mitochondrial OXPHOS of myoblasts. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Academic Editor: Rebeca Acín-Pérez |
ISSN: | 1942-0900 1942-0994 |
DOI: | 10.1155/2016/8296150 |