Electrospun Three-Dimensional Nanofibrous Structure via Probe Arrays Inducing

The fast and precise direct-printing of micro three-dimensional (3D) structures is the important development trend for micro/nano fabrication technique. A novel method with probe arrays was built up to realize the controllable deposition of 3D electrospun nanofibrous structures. Firstly, several 3D...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 9; no. 9; p. 427
Main Authors Liu, Yifang, Liu, Ruimin, Wang, Xiang, Jiang, Jiaxin, Li, Wenwang, Liu, Juan, Guo, Shumin, Zheng, Gaofeng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 24.08.2018
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The fast and precise direct-printing of micro three-dimensional (3D) structures is the important development trend for micro/nano fabrication technique. A novel method with probe arrays was built up to realize the controllable deposition of 3D electrospun nanofibrous structures. Firstly, several 3D nanofibrous structures were built on a single probe and 2-, 3-probes, which indicated that the probe height and probe interval played a key role on the 3D structure morphology. Then, different stereo nanofibrous structures based on multiprobe arrays were achieved accurately and the effects of processing parameters, including the probe height, probe interval, applied voltage and flow rate on the deposition behaviors of electrospun nanofiber over the probe arrays were investigated. The deposition area of 3D electrospun nanofibrous structures decreased with the increase of probe interval, applied voltage, and flow rate. Several 3D nanofibrous structures of special shapes including convex, triangle wave, inverted cone and complex curved surface were demonstrated by controlling the configuration of probe arrays and electrospinning parameters. This work provides an effective and simple way for the construction of 3D electrospun nanofibrous structures, which has great potentials in various medical and industrial applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-666X
2072-666X
DOI:10.3390/mi9090427