Antibiotic Restriction Might Facilitate the Emergence of Multi-drug Resistance

High antibiotic resistance frequencies have become a major public health issue. The decrease in new antibiotics' production, combined with increasing frequencies of multi-drug resistant (MDR) bacteria, cause substantial limitations in treatment options for some bacterial infections. To diminish...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 11; no. 6; p. e1004340
Main Authors Obolski, Uri, Stein, Gideon Y, Hadany, Lilach
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High antibiotic resistance frequencies have become a major public health issue. The decrease in new antibiotics' production, combined with increasing frequencies of multi-drug resistant (MDR) bacteria, cause substantial limitations in treatment options for some bacterial infections. To diminish overall resistance, and especially the occurrence of bacteria that are resistant to all antibiotics, certain drugs are deliberately scarcely used--mainly when other options are exhausted. We use a mathematical model to explore the efficiency of such antibiotic restrictions. We assume two commonly used drugs and one restricted drug. The model is examined for the mixing strategy of antibiotic prescription, in which one of the drugs is randomly assigned to each incoming patient. Data obtained from Rabin medical center, Israel, is used to estimate realistic single and double antibiotic resistance frequencies in incoming patients. We find that broad usage of the hitherto restricted drug can reduce the number of incorrectly treated patients, and reduce the spread of bacteria resistant to both common antibiotics. Such double resistant infections are often eventually treated with the restricted drug, and therefore are prone to become resistant to all three antibiotics. Thus, counterintuitively, a broader usage of a formerly restricted drug can sometimes lead to a decrease in the emergence of bacteria resistant to all drugs. We recommend re-examining restriction of specific drugs, when multiple resistance to the relevant alternative drugs already exists.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: UO LH GYS. Performed the experiments: UO. Analyzed the data: UO LH. Contributed reagents/materials/analysis tools: GYS. Wrote the paper: UO LH GYS.
The authors have declared that no competing interests exist.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1004340