Brain protective effect and hemodynamics of dexmedetomidine hydrochloride in patients with intracranial aneurysm

The purpose of the study was to investigate the effect of dexmedetomidine hydrochloride (Dex) on the recovery of cognitive function, hemodynamics, and postoperative analgesia in patients undergoing intracranial aneurysm craniotomy. Methods: general anesthesia was performed on patients undergoing int...

Full description

Saved in:
Bibliographic Details
Published inSaudi journal of biological sciences Vol. 27; no. 7; pp. 1850 - 1855
Main Authors Zheng, Deli, Zhao, Shuai, Zhang, Nana, Shi, Ji
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The purpose of the study was to investigate the effect of dexmedetomidine hydrochloride (Dex) on the recovery of cognitive function, hemodynamics, and postoperative analgesia in patients undergoing intracranial aneurysm craniotomy. Methods: general anesthesia was performed on patients undergoing intracranial aneurysm craniotomy in neurosurgery. Patients were randomly divided into three groups: Dex 1 group (Dex dose: 1 μg/kg), Dex 2 group (Dex dose: 0.5 μg/kg), and blank control group (normal saline). The changes of heart rate, arterial pressure, intraoperative brain function index, and postoperative pain score were recorded and compared. Results: in Dex 1 group and Dex 2 group, the heart rate of T1 and T2 phase was significantly lower than that of T3-T7 phases (P < 0.05); compared with the control group, the heart rate of Dex 1 group and Dex 2 group was significantly lower (P < 0.05). The average arterial pressure of the control group and Dex groups was significantly different (P < 0.05). Compared with the control group, there were significant differences between Dex 1 group and Dex 2 group: S100 β protein in T7-T10, NSE (neuron specific enolase) in T9 and T10, pain score in T8, T9 and T10 after operation. Conclusion: the application of Dex in the resection of intracranial aneurysms can protect the brain of patients, minimize the influence of operation on hemodynamics, and relieve postoperative pain, which is worthy of clinical application.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1319-562X
2213-7106
DOI:10.1016/j.sjbs.2020.03.027