Cooperativity in Ion Hydration
Despite prolonged scientific efforts to unravel the effects of ions on the structure and dynamics of water, many open questions remain, in particular concerning the spatial extent of this effect (i.e., the number of water molecules affected) and the origin of ion-specific effects. A combined teraher...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 328; no. 5981; pp. 1006 - 1009 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
21.05.2010
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Despite prolonged scientific efforts to unravel the effects of ions on the structure and dynamics of water, many open questions remain, in particular concerning the spatial extent of this effect (i.e., the number of water molecules affected) and the origin of ion-specific effects. A combined terahertz and femtosecond infrared spectroscopic study of water dynamics around different ions (specifically magnesium, lithium, sodium, and cesium cations, as well as sulfate, chloride, iodide, and perchlorate anions) reveals that the effect of ions and counterions on water can be strongly interdependent and nonadditive, and in certain cases extends well beyond the first solvation shell of water molecules directly surrounding the ion. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1183512 |