Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System

In this paper, a high-power high-efficiency wireless-power-transfer system using the class-E operation for transmitter via inductive coupling has been designed and fabricated using the proposed design approach. The system requires no complex external control system but relies on its natural impedanc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 56; no. 5; pp. 1801 - 1812
Main Authors Zhen Ning Low, Chinga, R.A., Tseng, R., Jenshan Lin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a high-power high-efficiency wireless-power-transfer system using the class-E operation for transmitter via inductive coupling has been designed and fabricated using the proposed design approach. The system requires no complex external control system but relies on its natural impedance response to achieve the desired power-delivery profile across a wide range of load resistances while maintaining high efficiency to prevent any heating issues. The proposed system consists of multichannels with independent gate drive to control power delivery. The fabricated system is compact and capable of 295 W of power delivery at 75.7% efficiency with forced air cooling and of 69 W of power delivery at 74.2% efficiency with convection cooling. This is the highest power and efficiency of a loosely coupled planar wireless-power-transfer system reported to date.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2008.2010110