A Time-Resolved Fluorescence Assay to Identify Small-Molecule Inhibitors of HIV-1 Fusion
Fusion of host cell and human immunodeficiency virus type 1 (HIV-1) membranes is mediated by the 2 “heptad-repeat” regions of the viral gp41 protein. The collapse of the C-terminal heptad-repeat regions into the hydrophobic grooves of a coiled-coil formed by the corresponding homotrimeric N-terminal...
Saved in:
Published in | Journal of biomolecular screening Vol. 12; no. 6; pp. 865 - 874 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fusion of host cell and human immunodeficiency virus type 1 (HIV-1) membranes is mediated by the 2 “heptad-repeat” regions of the viral gp41 protein. The collapse of the C-terminal heptad-repeat regions into the hydrophobic grooves of a coiled-coil formed by the corresponding homotrimeric N-terminal heptad-repeat regions generates a stable 6-helix bundle. This brings viral and cell membranes together for membrane fusion, facilitating viral entry. The authors developed an assay based on soluble peptides derived from the gp41 N-terminal heptad-repeat region (IQN36) as well as from the C-terminal region (C34). Both peptides were labeled with fluorophores, IQN36 with allophycocyanin (APC) and C34 with the lanthanide europium (Eu3+). Formation of the 6-helix bundle brings both fluorophores in close proximity needed for Förster resonance energy transfer (FRET). Compounds that interfere with binding of C34-Eu with IQN36-APC suppress the FRET signal. The assay was validated with various peptides and small molecules, and quenching issues were addressed. Evaluation of a diversified compound collection in a high-throughput screening campaign enabled identification of small molecules with different chemical scaffolds that inhibit this crucial intermediate in the HIV-1 entry process. This study’s observations substantiate the expediency of time-resolved FRET-based assays to identify small-molecule inhibitors of protein-protein interactions. |
---|---|
ISSN: | 2472-5552 1087-0571 2472-5560 |
DOI: | 10.1177/1087057107304645 |