Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus

Collagen cross-linking, a major post-translational modification of collagen, plays important roles in the biological and biomechanical features of bone. Collagen cross-links can be divided into lysyl hydroxylase and lysyl oxidase-mediated enzymatic immature divalent cross-links, mature trivalent pyr...

Full description

Saved in:
Bibliographic Details
Published inOsteoporosis international Vol. 21; no. 2; pp. 195 - 214
Main Authors Saito, M., Marumo, K.
Format Journal Article
LanguageEnglish
Published London Springer-Verlag 01.02.2010
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0937-941X
1433-2965
1433-2965
DOI10.1007/s00198-009-1066-z

Cover

Loading…
More Information
Summary:Collagen cross-linking, a major post-translational modification of collagen, plays important roles in the biological and biomechanical features of bone. Collagen cross-links can be divided into lysyl hydroxylase and lysyl oxidase-mediated enzymatic immature divalent cross-links, mature trivalent pyridinoline and pyrrole cross-links, and glycation- or oxidation-induced non-enzymatic cross-links (advanced glycation end products) such as glucosepane and pentosidine. These types of cross-links differ in the mechanism of formation and in function. Material properties of newly synthesized collagen matrix may differ in tissue maturity and senescence from older matrix in terms of cross-link formation. Additionally, newly synthesized matrix in osteoporotic patients or diabetic patients may not necessarily be as well-made as age-matched healthy subjects. Data have accumulated that collagen cross-link formation affects not only the mineralization process but also microdamage formation. Consequently, collagen cross-linking is thought to affect the mechanical properties of bone. Furthermore, recent basic and clinical investigations of collagen cross-links seem to face a new era. For instance, serum or urine pentosidine levels are now being used to estimate future fracture risk in osteoporosis and diabetes. In this review, we describe age-related changes in collagen cross-links in bone and abnormalities of cross-links in osteoporosis and diabetes that have been reported in the literature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0937-941X
1433-2965
1433-2965
DOI:10.1007/s00198-009-1066-z