WUS and STM-based reporter genes for studying meristem development in poplar

We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5' flanking regions of close homologs were used to drive expressi...

Full description

Saved in:
Bibliographic Details
Published inPlant cell reports Vol. 28; no. 6; pp. 947 - 962
Main Authors Bao, Y, Dharmawardhana, P, Arias, R, Allen, M. B, Ma, C, Strauss, Steven H
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Berlin/Heidelberg : Springer-Verlag 01.06.2009
Springer-Verlag
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5' flanking regions of close homologs were used to drive expression of the GUSPlus gene, 50-60% of the transgenic events showed expression in apical and axillary meristems. However, expression was also common in other organs, including in leaf veins (40 and 46% of WUS and STM transgenic events, respectively) and hydathodes (56% of WUS transgenic events). Histochemical GUS staining of explants during callogenesis and shoot regeneration using in vitro stems as explants showed that expression was detectable prior to visible shoot development, starting 3-15 days after explants were placed onto callus inducing medium. A minority of WUS and STM events also showed expression in the cambium, phloem, or xylem of regenerated, greenhouse grown plants undergoing secondary growth. Based on microarray gene expression data, a paralog of poplar WUS was detectably up-regulated during shoot initiation, but the other paralog was not. Both paralogs of poplar STM were down-regulated threefold to sixfold during early callus initiation. We identified 15-35 copies of cytokinin response regulator binding motifs (ARR1AT) and one copy of the auxin response element (AuxRE) in both promoters. Several of the events recovered may be useful for studying the process of primary and secondary meristem development, including treatments intended to stimulate meristem development to promote clonal propagation and genetic transformation.
Bibliography:http://dx.doi.org/10.1007/s00299-009-0685-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0721-7714
1432-203X
DOI:10.1007/s00299-009-0685-3