Neuropeptide S in the basolateral amygdala mediates an adaptive behavioral stress response in a rat model of posttraumatic stress disorder by increasing the expression of BDNF and the neuropeptide YY1 receptor
Neuropeptide S (NPS) is a regulatory peptide that has anxiolytic and arousal-promoting effects in rodents. We used an animal model of posttraumatic stress disorder (PTSD) to assess long-term behavioral effects of a single dose of NPS, microinjected into the basolateral amygdala (BLA) 1h following ex...
Saved in:
Published in | European neuropsychopharmacology Vol. 28; no. 1; pp. 159 - 170 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Neuropeptide S (NPS) is a regulatory peptide that has anxiolytic and arousal-promoting effects in rodents. We used an animal model of posttraumatic stress disorder (PTSD) to assess long-term behavioral effects of a single dose of NPS, microinjected into the basolateral amygdala (BLA) 1h following exposure to predator-scent stress (PSS). To elucidate the molecular mechanism by which NPS attenuates behavioral stress responses, expression levels of neuropeptide Y (NPY), NPY-Y1 receptor (NPY-Y1R), and brain-derived neurotrophic factor (BDNF) were evaluated in the hippocampus. The behavioral and molecular effects of NPS receptor antagonist (NPS-RA), NPY-Y1R antagonist (NPY-Y1RA), or both administered centrally were evaluated in the same manner. Circulating corticosterone levels were measured at different time points following PSS-exposure. Immediate post-exposure treatment with NPS had a marked protective effect; BLA microinfusion of NPS completely abolished the extreme behavioral response to PSS, restored the decreased expression of BDNF and, unexpectedly, PY-Y1R, but didn't affect the decreased expression of NPY. BLA microinfusion of both NPY-Y1RA and NPS-RA together had an additive effect, which completely prevented the anxiolytic effects of NPS in rats exposed to PSS and disrupted the expression of NPY-Y1R in the hippocampus following NPS infusion. It may therefore be hypothesized that NPS acts, directly or indirectly, on both the NPY-Y1R and NPS receptors and that the cross-talk between NPS and NPY-Y1R may be necessary for the anxiolytic effects of NPS post-exposure. The NPS system might thus contribute to a potential endogenous mechanism underlying the shift towards adaptive behavioral response and thereby might be relevant as a pharmacological target for attenuating stress-related sequelae. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0924-977X 1873-7862 1873-7862 |
DOI: | 10.1016/j.euroneuro.2017.11.006 |