Viscosity and surface tension measurements of RE2O3–MgO–SiO2 (RE=Y, Gd, Nd and La) melts

The effect of RE2O3 (RE=Y, Gd, Nd and La) on the viscosity and the surface tension of 45.2MgO–54.8SiO2 (mol%) melts have been investigated with rotating crucible viscometer and ring method, respectively. Additionally, structural characterizations of these quenched vitreous samples have been investig...

Full description

Saved in:
Bibliographic Details
Published inISIJ International Vol. 46; no. 3; pp. 388 - 393
Main Authors Shimizu, Fumiyuki, Tokunaga, Hirofumi, Saito, Noritaka, Nakashima, Kunihiko
Format Journal Article
LanguageEnglish
Published The Iron and Steel Institute of Japan 2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effect of RE2O3 (RE=Y, Gd, Nd and La) on the viscosity and the surface tension of 45.2MgO–54.8SiO2 (mol%) melts have been investigated with rotating crucible viscometer and ring method, respectively. Additionally, structural characterizations of these quenched vitreous samples have been investigated with Infra-Red spectrometer. The viscosities of RE2O3–MgO–SiO2 melts were found to decrease with increasing the content of any rare-earth additions, which suggests that rare-earth oxide behaves as a network modifier of complex silicate anions in high temperature melts. The viscosities decreased in the order of cationic radius of rare-earth; from Y2O3, Gd2O3, Nd2O3 to La2O3.The surface tension of MgO–SiO2 binary melts were found to increase with increasing the content of any rare-earth additions. The surface tensions obviously increased in the order of cationic radius of rare-earth, which the change of with rare-earth addition is direct antithesis of that of viscosities. The decrease of the absorption band of RE2O3–MgO–SiO2 glasses at 1 060 cm−1 (Si4nO9n2n−) with the attendant increase of the absorption band at 930 cm−1 (Si2O76−). These variations with rare-earth oxides content means that the degree of polymerization of complex silicate anions become smaller with rare-earth oxide additions. The viscosity of rare-earth containing silicate melts linearly increases with cationic field strength of RE3+. The surface tension of rare-earth containing silicate melts linearly decreases with cationic field strength, except Y2O3 additives.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.46.388