A Regenerable Hydrogel Electrolyte for Flexible Supercapacitors

Easy regenerability of core components such as electrode and electrolyte is highly required in advanced electrochemical devices. This work reports a reliable, regenerable, and stretchable hydrogel electrolyte based on ionic bonds between polyacrylic acid (PAA) and polyallylamine (PAH). PAA-PAH elect...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 23; no. 9; p. 101502
Main Authors Zhou, Guanbing, Yang, Leyi, Li, Weijun, Chen, Chongyi, Liu, Qiao
Format Journal Article
LanguageEnglish
Published Elsevier Inc 25.09.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Easy regenerability of core components such as electrode and electrolyte is highly required in advanced electrochemical devices. This work reports a reliable, regenerable, and stretchable hydrogel electrolyte based on ionic bonds between polyacrylic acid (PAA) and polyallylamine (PAH). PAA-PAH electrolyte (1M LiCl addition) exhibits high ionic conductivity (0.050 S·cm-1) and excellent mechanical property (fracture strain of 1,688%). Notably, the electrolyte can be regenerated to any desired shape under mild conditions and remains 96% and 90% of the initial ionic conductivity after the first and second regeneration, respectively. PAA-PAH/LiCl-based supercapacitor exhibits nearly 100% capacitance retention upon rolling, stretching, and 5,000 charge-discharge cycles, whereas the regenerated device holds 97.6% capacitance of the initial device and 90.9% after 5,000 cycles. This low-cost, high-efficiency, and regenerable hydrogel electrolyte reveals very promising use in solid-state/flexible supercapacitors and possibly becomes a standard commercial hydrogel electrolyte for sustainable electrochemical energy devices. [Display omitted] •Highly reliable PAA-PAH/LiCl electrolyte for flexible supercapacitor is developed•PAA-PAH/LiCl hydrogel electrolyte can be easily regenerated under mild conditions•Regenerated hydrogel shows high retention of ionic conductivity and extensibility•Regenerated device reserves >90% capacitance and durability of the original one Energy Materials; Materials Science; Polymer Chemistry
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2020.101502