Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study

Mean tree biomass and soil carbon (C) densities for 39 map sheet grids (1° lat. × 1.5° long.) covering the Acacia woodland savannah region of Sudan (10–16° N; 21–36° E) are presented. Data from the National Forest Inventory of Sudan, Harmonized World Soil Database and FAO Local Climate Estimator wer...

Full description

Saved in:
Bibliographic Details
Published inJournal of arid environments Vol. 89; pp. 67 - 76
Main Authors Alam, S.A., Starr, M., Clark, B.J.F.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mean tree biomass and soil carbon (C) densities for 39 map sheet grids (1° lat. × 1.5° long.) covering the Acacia woodland savannah region of Sudan (10–16° N; 21–36° E) are presented. Data from the National Forest Inventory of Sudan, Harmonized World Soil Database and FAO Local Climate Estimator were used to calculate C densities, mean annual precipitation (MAP) and mean annual temperature (MAT). Above-ground biomass C and soil organic carbon (SOC, 1 m) densities averaged 112 and 5453 g C m−2, respectively. Below-ground biomass C densities, estimated using root shoot ratios, averaged 33 g C m−2. Biomass C densities and MAP increased southwards across the region while SOC densities were lowest in the centre of the region and increased westwards and eastwards. Both above-ground biomass C and SOC densities were significantly (p < 0.05) correlated with MAP (rs = 0.84 and rs = 0.34, respectively) but showed non-significant correlations with MAT (rs = −0.22 and rs = 0.24, respectively). SOC densities were significantly correlated with biomass C densities (rs = 0.34). The results indicated substantial under stocking of trees and depletion of SOC, and potential for C sequestration. Up-to-date regional and integrated soil and forest inventories are required for planning improved land-use management and restoration. ► Sudanese woodland savannah tree biomass C and SOC (1 m) densities were estimated. ► Above-ground biomass C and SOC densities averaged 112 and 5453 g C m−2. ► SOC densities significantly correlated with above-ground biomass C densities. ► Biomass C and SOC densities significantly correlated with MAP, but not with MAT. ► C densities across the region are considerably below sequestration potential.
Bibliography:http://dx.doi.org/10.1016/j.jaridenv.2012.10.002
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0140-1963
1095-922X
DOI:10.1016/j.jaridenv.2012.10.002