Mechanism of Reversible Self-Association of a Monoclonal Antibody: Role of Electrostatic and Hydrophobic Interactions
Reversible self-association of protein therapeutics, the phenomenon of formation of native reversible oligomeric species as a result of noncovalent intermolecular interactions, can add additional manufacturing, stability, delivery, and safety complexities in biopharmaceutical development. Its early...
Saved in:
Published in | Journal of pharmaceutical sciences Vol. 104; no. 2; pp. 577 - 586 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Reversible self-association of protein therapeutics, the phenomenon of formation of native reversible oligomeric species as a result of noncovalent intermolecular interactions, can add additional manufacturing, stability, delivery, and safety complexities in biopharmaceutical development. Its early detection, characterization, and mitigation can therefore contribute to the success of drug development. A variety of structural and environmental factors can contribute to the modulation of self-association with mechanisms still elusive in some cases due to the inherent structural complexity of proteins. By combining the capabilities of dynamic and static light scattering techniques, the modulatory effects of a variety of solution conditions on a model IgGI’s (mAbA) intermolecular interactions have been utilized to derive mechanism of its self-association at relatively low-protein concentration. The analysis of the effect of pH, buffer type, Hofmeister salts, and aromatic amino acids utilizing light scattering supported a combined role of hydrophobic and electrostatic interactions in mAbA self-association. Fitting of the data into the equilibrium models obtained from the multiangle static light scattering provided the enthalpic and entropic contributions of self-association, highlighting the more dominant effect of electrostatic interactions. In addition, studies of the Fab and Fc fragments of mAbA suggested the key role of the former in observed self-association. |
---|---|
Bibliography: | Reza Esfandiary and Arun Parupudi contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-3549 1520-6017 |
DOI: | 10.1002/jps.24237 |