Phase I Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer: Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics as a Determinant of Clinical Response
BACKGROUND Chimeric antigen receptor (CAR)‐modified “designer” T cells (dTc, CAR‐T) against PSMA selectively target antigen‐expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate estab...
Saved in:
Published in | The Prostate Vol. 76; no. 14; pp. 1257 - 1270 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.10.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND
Chimeric antigen receptor (CAR)‐modified “designer” T cells (dTc, CAR‐T) against PSMA selectively target antigen‐expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors.
METHODS
Patients underwent chemotherapy conditioning, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve ≥20% engraftment of infused activated T cells.
RESULTS
Six patients enrolled with doses prepared of whom five were treated. Patients received 109 or 1010 autologous T cells, achieving expansions of 20–560‐fold over 2 weeks and engraftments of 5–56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20‐fold with high engraftments of activated T cells (aTc) in an inverse correlation (P < 0.01). Clinically, no anti‐PSMA toxicities were noted, and no anti‐CAR reactivities were detected post‐treatment. Two‐of‐five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P = 0.6), instead correlating inversely with engraftment (P = 0.06) and directly with plasma IL2 (P = 0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti‐tumor activity under optimal (high) dTc engraftments.
CONCLUSIONS
Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmacodynamics of “drug–drug” interactions may have a critical impact on the efficacy of their co‐application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257–1270, 2016. © 2016 Wiley Periodicals, Inc. |
---|---|
AbstractList | Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors.
Patients under-went chemotherapy condi-tion-ing, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve ≥20% engraftment of infused activated T cells.
Six patients enrolled with doses prepared of whom five were treated. Patients received 10(9) or 10(10) autologous T cells, achieving expansions of 20-560-fold over 2 weeks and engraftments of 5-56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20-fold with high engraftments of activated T cells (aTc) in an inverse correlation (P < 0.01). Clinically, no anti-PSMA toxicities were noted, and no anti-CAR reactivities were detected post-treatment. Two-of-five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P = 0.6), instead correlating inversely with engraftment (P = 0.06) and directly with plasma IL2 (P = 0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti-tumor activity under optimal (high) dTc engraftments.
Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmaco-dynamics of "drug-drug" interactions may have a critical impact on the efficacy of their co-application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257-1270, 2016. © 2016 Wiley Periodicals, Inc. BACKGROUND Chimeric antigen receptor (CAR)‐modified “designer” T cells (dTc, CAR‐T) against PSMA selectively target antigen‐expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors. METHODS Patients underwent chemotherapy conditioning, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve ≥20% engraftment of infused activated T cells. RESULTS Six patients enrolled with doses prepared of whom five were treated. Patients received 109 or 1010 autologous T cells, achieving expansions of 20–560‐fold over 2 weeks and engraftments of 5–56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20‐fold with high engraftments of activated T cells (aTc) in an inverse correlation (P < 0.01). Clinically, no anti‐PSMA toxicities were noted, and no anti‐CAR reactivities were detected post‐treatment. Two‐of‐five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P = 0.6), instead correlating inversely with engraftment (P = 0.06) and directly with plasma IL2 (P = 0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti‐tumor activity under optimal (high) dTc engraftments. CONCLUSIONS Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmacodynamics of “drug–drug” interactions may have a critical impact on the efficacy of their co‐application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257–1270, 2016. © 2016 Wiley Periodicals, Inc. BACKGROUND Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors. METHODS Patients under-went chemotherapy condi-tion-ing, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve greater than or equal to 20% engraftment of infused activated T cells. RESULTS Six patients enrolled with doses prepared of whom five were treated. Patients received 10 super(9) or 10 super(10) autologous T cells, achieving expansions of 20-560-fold over 2 weeks and engraftments of 5-56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20-fold with high engraftments of activated T cells (aTc) in an inverse correlation (P<0.01). Clinically, no anti-PSMA toxicities were noted, and no anti-CAR reactivities were detected post-treatment. Two-of-five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P=0.6), instead correlating inversely with engraftment (P=0.06) and directly with plasma IL2 (P=0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti-tumor activity under optimal (high) dTc engraftments. CONCLUSIONS Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmaco-dynamics of "drug-drug" interactions may have a critical impact on the efficacy of their co-application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257-1270, 2016. BACKGROUND Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors. METHODS Patients underwent chemotherapy conditioning, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve ≥20% engraftment of infused activated T cells. RESULTS Six patients enrolled with doses prepared of whom five were treated. Patients received 109 or 1010 autologous T cells, achieving expansions of 20-560-fold over 2 weeks and engraftments of 5-56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20-fold with high engraftments of activated T cells (aTc) in an inverse correlation (P<0.01). Clinically, no anti-PSMA toxicities were noted, and no anti-CAR reactivities were detected post-treatment. Two-of-five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P=0.6), instead correlating inversely with engraftment (P=0.06) and directly with plasma IL2 (P=0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti-tumor activity under optimal (high) dTc engraftments. CONCLUSIONS Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmacodynamics of "drug-drug" interactions may have a critical impact on the efficacy of their co-application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257-1270, 2016. © 2016 Wiley Periodicals, Inc. |
Author | Ma, Qiangzhong Lo, Agnes S.Y. Junghans, Richard P. Bais, Anthony J. Davies, Robin A. Cabral, Howard J. Cohen, Stephen I. Al-Homsi, A. Samer Gomes, Erica M. Abedi, Mehrdad Rathore, Ritesh |
Author_xml | – sequence: 1 givenname: Richard P. surname: Junghans fullname: Junghans, Richard P. email: rjunghans@tuftsmedicalcenter.orgrich32323@yahoo.com organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island – sequence: 2 givenname: Qiangzhong surname: Ma fullname: Ma, Qiangzhong organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island – sequence: 3 givenname: Ritesh surname: Rathore fullname: Rathore, Ritesh organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence – sequence: 4 givenname: Erica M. surname: Gomes fullname: Gomes, Erica M. organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence – sequence: 5 givenname: Anthony J. surname: Bais fullname: Bais, Anthony J. organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence – sequence: 6 givenname: Agnes S.Y. surname: Lo fullname: Lo, Agnes S.Y. organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island – sequence: 7 givenname: Mehrdad surname: Abedi fullname: Abedi, Mehrdad organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence – sequence: 8 givenname: Robin A. surname: Davies fullname: Davies, Robin A. organization: Protocol Office, Roger Williams Medical Center, Rhode Island, Providence – sequence: 9 givenname: Howard J. surname: Cabral fullname: Cabral, Howard J. organization: Department of Biostatistics, Boston University School of Public Health, Massachusetts, Boston – sequence: 10 givenname: A. Samer surname: Al-Homsi fullname: Al-Homsi, A. Samer organization: Division of Hematologic Malignancies and Blood and Marrow Transplantation, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence – sequence: 11 givenname: Stephen I. surname: Cohen fullname: Cohen, Stephen I. organization: Division of Urology, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27324746$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URKeFDQ-ALLFBSCl24sQTdtMAZVB_wnRQJTaW49wUt4k92IlgHop3xCEzLCqEZNlefOfeo3OO0IGxBhB6TskJJSR-s3HWn8RJTNkjNKMk5xEhLD1AMxJzEjGa8EN05P0dIQEn8RN0GPMkZpxlM_Sr_CY94CVeOy1bbBu8ML2OyuuLBX4HXt8acLhYrKI1LqBtPdYGl2FfL3vAhTQK3FtcWu911QJe2XA11uGl6cFJ1WtzO_1bGO6DNN7NwWGt66Sy9dbITiuPZThhY0A7baTpRytFq41WwdYK_MYaD0_R40a2Hp7t3mP05cP7dfExOr86WxaL80ixfM4iJtk8JblKad1IViugTNVZk88VcFZnUsWVAqgkb2peV2RO04qATGsVsppXJEuO0atpboj2-wC-F532KviWBuzgBQ0SHuLM04C-fIDe2cGZ4G6kaJrTLBmpFztqqDqoxcbpTrqt2BcRADIBKoTrHTRC6ZCxtqZ3UreCEjF2LcauxZ-ug-T1A8l-6j9hOsE_dAvb_5CiXF1d7zXRpNG-h59_NdLdi4wnPBU3l2fi8-XXTyQ-vRA3yW8u0smY |
CODEN | PRSTDS |
CitedBy_id | crossref_primary_10_3390_cancers15030663 crossref_primary_10_20517_jtgg_2023_46 crossref_primary_10_1080_1354750X_2021_2016973 crossref_primary_10_3389_fimmu_2019_02250 crossref_primary_10_1177_17562872231182219 crossref_primary_10_1016_j_lfs_2020_118300 crossref_primary_10_1136_jitc_2021_003633 crossref_primary_10_1016_j_biopha_2021_112512 crossref_primary_10_1016_j_canlet_2022_216007 crossref_primary_10_3389_fimmu_2023_1265751 crossref_primary_10_1200_EDBK_278853 crossref_primary_10_1002_jso_24627 crossref_primary_10_3390_cancers13205065 crossref_primary_10_1038_s41419_018_0278_6 crossref_primary_10_1155_2017_6915912 crossref_primary_10_1021_acsami_4c20275 crossref_primary_10_1016_j_omto_2023_04_007 crossref_primary_10_1158_1078_0432_CCR_17_0618 crossref_primary_10_1155_2019_3425291 crossref_primary_10_4103_bbrj_bbrj_64_20 crossref_primary_10_1016_j_omto_2020_06_014 crossref_primary_10_3389_fimmu_2022_1032403 crossref_primary_10_1007_s00280_018_3670_0 crossref_primary_10_1007_s11864_020_00808_x crossref_primary_10_3389_fonc_2022_915171 crossref_primary_10_2217_imt_2019_0019 crossref_primary_10_3389_fimmu_2024_1362133 crossref_primary_10_1016_j_bbmt_2018_03_021 crossref_primary_10_1016_j_yexmp_2024_104904 crossref_primary_10_1080_1061186X_2024_2418344 crossref_primary_10_1093_neuros_nyab042 crossref_primary_10_1002_ila2_8 crossref_primary_10_1016_j_lfs_2021_119132 crossref_primary_10_1186_s13287_020_02128_1 crossref_primary_10_1177_1073274819870549 crossref_primary_10_1126_sciadv_adf0108 crossref_primary_10_1158_1078_0432_CCR_19_1835 crossref_primary_10_1038_cgt_2016_82 crossref_primary_10_4111_icu_20230348 crossref_primary_10_1038_s41571_021_00476_2 crossref_primary_10_1097_PPO_0000000000000516 crossref_primary_10_1002_cac2_12416 crossref_primary_10_3390_biomedicines9040392 crossref_primary_10_1016_j_addr_2022_114112 crossref_primary_10_1016_j_ctarc_2020_100164 crossref_primary_10_1097_CCO_0000000000000562 crossref_primary_10_1097_MOU_0000000000001115 crossref_primary_10_2174_1568009622666220928141727 crossref_primary_10_3390_cancers14112632 crossref_primary_10_1038_s41591_019_0564_6 crossref_primary_10_1177_17588359211053898 crossref_primary_10_1016_j_cyto_2023_156268 crossref_primary_10_1080_2162402X_2021_1899469 crossref_primary_10_1016_j_imlet_2019_06_002 crossref_primary_10_1007_s00120_023_02223_0 crossref_primary_10_1016_j_mehy_2019_109545 crossref_primary_10_1186_s13287_021_02510_7 crossref_primary_10_3390_ijms22062818 crossref_primary_10_1002_adhm_202100157 crossref_primary_10_2217_imt_2021_0228 crossref_primary_10_1159_000500488 crossref_primary_10_1016_j_bbcan_2023_188930 crossref_primary_10_3390_cancers13092244 crossref_primary_10_1038_gt_2017_81 crossref_primary_10_1089_hum_2017_251 crossref_primary_10_1007_s00432_022_04547_4 crossref_primary_10_3390_ijms21155484 crossref_primary_10_54097_hset_v36i_6270 crossref_primary_10_1016_j_hoc_2023_05_009 crossref_primary_10_1016_j_phrs_2024_107213 crossref_primary_10_1016_j_jcyt_2021_07_014 crossref_primary_10_3390_cancers15082236 crossref_primary_10_1016_S1470_2045_17_30327_3 crossref_primary_10_1158_1078_0432_CCR_21_1483 crossref_primary_10_3390_cancers14040967 crossref_primary_10_1007_s12032_025_02633_4 crossref_primary_10_32948_auo_2019_09_04 crossref_primary_10_4103_1319_2442_390259 crossref_primary_10_18632_oncotarget_14229 crossref_primary_10_3390_cells9061522 crossref_primary_10_1016_j_pharmthera_2019_107419 crossref_primary_10_1007_s12254_021_00703_7 crossref_primary_10_1097_MOU_0000000000000682 crossref_primary_10_54133_ajms_v6i2_726 crossref_primary_10_1002_cmdc_202100722 crossref_primary_10_1016_j_omto_2021_07_003 crossref_primary_10_1177_17588359231170474 crossref_primary_10_3390_curroncol29070400 crossref_primary_10_1016_j_bbcan_2022_188701 crossref_primary_10_1007_s42451_020_00172_y crossref_primary_10_3390_ijms22020640 crossref_primary_10_1089_jir_2018_0019 crossref_primary_10_1007_s00120_020_01198_6 crossref_primary_10_1139_cjpp_2023_0083 crossref_primary_10_1016_j_canlet_2021_06_010 crossref_primary_10_1111_iju_13397 crossref_primary_10_1002_jcb_28250 crossref_primary_10_14245_ns_2244290_145 crossref_primary_10_56875_2589_0646_1028 crossref_primary_10_1002_jha2_356 crossref_primary_10_3389_fcell_2022_969020 crossref_primary_10_1038_s41416_023_02354_3 crossref_primary_10_1038_s41585_021_00488_8 crossref_primary_10_3390_cancers13153912 crossref_primary_10_1080_2162402X_2020_1777064 crossref_primary_10_1097_MOU_0000000000000462 crossref_primary_10_1007_s13402_021_00593_1 crossref_primary_10_1007_s40263_019_00687_3 crossref_primary_10_3389_fimmu_2017_01934 crossref_primary_10_1080_08820139_2023_2264332 crossref_primary_10_5858_arpa_2019_0632_CP crossref_primary_10_1016_j_critrevonc_2024_104556 crossref_primary_10_1016_j_ctarc_2018_08_001 crossref_primary_10_1172_jci_insight_152014 crossref_primary_10_3390_cancers14225719 crossref_primary_10_1016_j_addr_2022_114421 crossref_primary_10_1038_s41467_024_53220_6 crossref_primary_10_3390_cancers11010047 crossref_primary_10_33590_emjurol_10313570 crossref_primary_10_1007_s00432_023_05152_9 crossref_primary_10_1186_s40364_020_00198_0 crossref_primary_10_1360_TB_2024_0428 crossref_primary_10_1016_j_addr_2019_01_007 crossref_primary_10_1038_s41423_021_00655_2 crossref_primary_10_1371_journal_pone_0247701 crossref_primary_10_1007_s00335_018_9756_5 crossref_primary_10_2217_fon_2019_0635 crossref_primary_10_3390_diagnostics9040161 crossref_primary_10_1007_s11427_019_9665_8 crossref_primary_10_1002_adhm_202304615 crossref_primary_10_1186_s13046_018_0817_0 crossref_primary_10_1007_s11912_021_01084_0 crossref_primary_10_1134_S0006297919070022 crossref_primary_10_1016_j_lfs_2023_122381 crossref_primary_10_3390_ijms23052569 crossref_primary_10_1038_s41568_021_00363_z crossref_primary_10_1016_j_bioorg_2023_106889 crossref_primary_10_1016_j_ymthe_2020_09_015 crossref_primary_10_1080_07357907_2022_2125004 crossref_primary_10_3390_jcm13113202 crossref_primary_10_1016_j_eururo_2019_08_014 crossref_primary_10_1089_hum_2018_29069_aba crossref_primary_10_30699_mmlj17_4_2_19 crossref_primary_10_1093_noajnl_vdab107 crossref_primary_10_2147_JIR_S368138 crossref_primary_10_3390_biology12020287 crossref_primary_10_1016_j_tmrv_2019_01_005 crossref_primary_10_1016_j_copbio_2018_01_025 crossref_primary_10_1016_j_xcrm_2022_100543 crossref_primary_10_3390_cancers15041052 crossref_primary_10_3390_biomedicines10081872 crossref_primary_10_1017_erm_2021_32 crossref_primary_10_1186_s13045_021_01067_5 crossref_primary_10_1080_14737140_2017_1395285 crossref_primary_10_1007_s12015_019_09901_7 crossref_primary_10_3389_fimmu_2023_1045024 crossref_primary_10_1155_2018_4263520 crossref_primary_10_1016_j_ymthe_2017_10_019 crossref_primary_10_1186_s40880_017_0216_5 crossref_primary_10_3389_fonc_2019_00248 crossref_primary_10_3390_cancers11020191 crossref_primary_10_36401_JIPO_22_7 crossref_primary_10_1016_j_trecan_2024_01_003 crossref_primary_10_1155_2023_7530794 crossref_primary_10_3390_uro2020010 crossref_primary_10_3390_cancers14205108 crossref_primary_10_1016_j_bcp_2019_06_002 crossref_primary_10_1200_EDBK_180328 crossref_primary_10_37349_emed_2021_00043 crossref_primary_10_3389_fonc_2021_722277 crossref_primary_10_1186_s13045_018_0568_6 crossref_primary_10_3390_cancers13215574 crossref_primary_10_1136_jitc_2020_001649 crossref_primary_10_1016_j_coph_2021_05_004 crossref_primary_10_1016_S0007_4551_19_30048_7 crossref_primary_10_1080_14712598_2018_1406916 crossref_primary_10_1158_2159_8290_CD_18_0297 crossref_primary_10_1146_annurev_bioeng_070620_033348 crossref_primary_10_12688_f1000research_14499_1 crossref_primary_10_32725_jab_2019_005 crossref_primary_10_1146_annurev_med_081522_031439 crossref_primary_10_1016_j_yexcr_2018_05_009 crossref_primary_10_1007_s11060_024_04876_z crossref_primary_10_1007_s12032_022_01824_7 crossref_primary_10_3390_cancers13030549 crossref_primary_10_1177_1721727X221078727 crossref_primary_10_1016_j_yexcr_2021_112971 crossref_primary_10_1016_j_jcyt_2022_02_005 crossref_primary_10_1080_15384047_2024_2315655 crossref_primary_10_1016_j_jcyt_2019_07_004 crossref_primary_10_1038_s41391_020_00299_9 crossref_primary_10_1097_BS9_0000000000000025 crossref_primary_10_1038_s41598_017_10940_8 crossref_primary_10_3389_fimmu_2023_1113882 crossref_primary_10_1186_s12967_023_04292_3 crossref_primary_10_1002_cncr_30250 crossref_primary_10_3389_fonc_2019_00858 crossref_primary_10_3390_cancers12071752 crossref_primary_10_1007_s40263_018_0582_9 crossref_primary_10_3390_ijms25084170 crossref_primary_10_1016_j_clgc_2023_12_008 crossref_primary_10_3390_cancers11121857 crossref_primary_10_3390_cancers14235983 crossref_primary_10_1007_s11010_022_04568_0 crossref_primary_10_1038_s41391_021_00394_5 crossref_primary_10_3390_cancers12092567 |
Cites_doi | 10.1002/pros.20073 10.1053/j.seminoncol.2012.02.010 10.1158/1078-0432.CCR-10-0043 10.1016/S0140-6736(14)61403-3 10.1038/mt.2010.24 10.1016/S0140-6736(10)61389-X 10.1200/JCO.1994.12.7.1475 10.4049/jimmunol.174.5.2591 10.1056/NEJMoa1103849 10.1093/jnci/86.15.1159 10.1016/j.eururo.2011.11.009 10.1158/1078-0432.CCR-14-1421 10.1038/mt.2010.162 10.1158/1078-0432.CCR-10-1762 10.1016/j.neuroscience.2006.10.022 10.1056/NEJMoa1407222 10.1182/blood-2011-10-384388 10.1007/s00268-005-0544-5 10.1182/blood-2002-04-1200 10.1002/cncr.26437 10.1056/NEJMoa1014618 10.1200/JCO.2008.19.9810 10.1200/JCO.2006.05.9964 10.1186/1479-5876-8-55 10.1056/NEJMoa1207506 10.1097/00000658-198910000-00008 10.1200/JCO.2007.12.4008 10.1158/1078-0432.CCR-07-4910 10.1038/mt.2010.31 10.1002/pros.22749 10.3322/caac.21332 10.1056/NEJMoa1001294 10.1200/jco.2013.31.6_suppl.72 10.1097/00002371-200011000-00004 10.1126/scitranslmed.3008226 10.1200/JCO.2005.00.240 10.1200/JCO.2008.16.5449 10.1182/blood-2004-12-4906 10.1126/scitranslmed.3005930 10.1126/scitranslmed.3002842 10.1158/0008-5472.CAN-04-0454 10.1007/s00262-010-0939-5 10.1056/NEJM200103153441118 10.1158/1078-0432.CCR-06-1209 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TO 8FD FR3 H94 K9. P64 RC3 |
DOI | 10.1002/pros.23214 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-0045 |
EndPage | 1270 |
ExternalDocumentID | 4148504851 27324746 10_1002_pros_23214 PROS23214 ark_67375_WNG_QNZJ02BM_W |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Clinical Trial, Phase I Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Prometheus Laboratories Inc. – fundername: Novartis Corporation – fundername: Amgen – fundername: DOD Prostate Cancer Program – fundername: Prostate Cancer Foundation |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6P MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WWO WXI WXSBR XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AAYCA ACYXJ AFWVQ ALVPJ AANHP AAYXX ACRPL ADNMO AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7T5 7TO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H94 K9. P64 RC3 |
ID | FETCH-LOGICAL-c4984-4a48509c51dfa4dce14cd6f98ce74d6ac2bceeba7fd7db0815b0ea5dc4138b063 |
IEDL.DBID | DR2 |
ISSN | 0270-4137 |
IngestDate | Fri Jul 11 04:10:17 EDT 2025 Sun Jul 13 03:35:53 EDT 2025 Wed Feb 19 02:43:39 EST 2025 Tue Jul 01 00:24:46 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Wed Jan 22 16:32:35 EST 2025 Wed Oct 30 09:53:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | gene therapy designer T cells PSA delay CAR-T cells immunotherapy |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4984-4a48509c51dfa4dce14cd6f98ce74d6ac2bceeba7fd7db0815b0ea5dc4138b063 |
Notes | istex:049EDC2077D90F6AC4B1BA88975D57869DD51C45 ark:/67375/WNG-QNZJ02BM-W Amgen Prometheus Laboratories Inc. Prostate Cancer Foundation Novartis Corporation ArticleID:PROS23214 DOD Prostate Cancer Program ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27324746 |
PQID | 1811591635 |
PQPubID | 1016443 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1815700195 proquest_journals_1811591635 pubmed_primary_27324746 crossref_citationtrail_10_1002_pros_23214 crossref_primary_10_1002_pros_23214 wiley_primary_10_1002_pros_23214_PROS23214 istex_primary_ark_67375_WNG_QNZJ02BM_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 1, 2016 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 1, 2016 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | The Prostate |
PublicationTitleAlternate | Prostate |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2008; 363:411-422. Antonarakis ES, Zahurak ML, Lin J, Keizman D, Carducci MA, Eisenberger MA. Changes in PSA kinetics predict metastasis-free survival in men with PSA-recurrent prostate cancer treated with nonhormonal agents: Combined analysis of 4 phase II trials. Cancer 2001; 118:1533-1542. Beecham EJ, Ma QZ, Ripley R, Junghans RP. Coupling of CD28 co-stimulation to IgTCR molecules: Dynamics of T cell proliferation and death. J Immunother 2000; 23:631-642. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Fillie AC, Abati A, Rosenberg SA. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23:2346-2357. Junghans RP. Is it safer CARs that we need, or safer rules of the road? Mol Ther 2010; 10:1742-1743. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015; 385:517-528. Armstrong AJ, Eisenberger MA, Halabi S, Oudard S, Nanus DM, Petrylak DP, Sartor AO, Scher HI. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol 2011; 61:549-559. Madan RA, Bilusic M, Heery C, Schlom J, Gulley JL. Clinical evaluation of TRICOM vector therapeutic cancer vaccines. Semin Oncol 2012; 39:296-304. Junghans RP, Manning W, Safar M, Quist W. Biventricular cardiac thrombosis during interleukin-2 infusion. N Engl J Med 2001; 344(11):859-860. Schwartzentruber DJ, Hom SS, Dadmarz R, White DE, Yannelli JR, Steinberg SM, Rosenberg SA, Topalian SL. In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2. J Clin Oncol 1994; 12:1475-1483. Brentjens RJ, Davila ML, Rivière I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5:177ra8. Emtage PCR, Lo ASY, Liu DL, Gomes EM, Gonzalo- Daganzo R, Junghans RP. 2nd generation anti-CEA designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines and exhibit superior anti-tumor activity in vivo: A preclinical evaluation. Clin Cancer Res 2008; 14:8112-8122. Konrad MW, Hemstreet G, Hersh EM, Mansell PW, Mertelsmann R, Kolitz JE, Bradley EC. Pharmacokinetics of recombinant interleukin 2 in humans. Cancer Res 1990; 50:2009-2017. Kinoshita Y, Kuratsukuri K, Landas S, Imaida K, Rovito PM Jr., Wang CY, Haas GP. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg 2006; 30:628-636. Ma Q, Gomes EM, Lo AS, Junghans RP. Advanced generation anti- prostate specific membrane antigen designer T cells for prostate cancer immunotherapy. Prostate 2014; 74:286-296. Davila ML, Rivière I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olszewska M, Qu J, Wasielewska T, He Q, Fink M, Shinglot H, Youssif M, Satter M, Wang Y, Hosey J, Quintanilla H, Halton E, Bernal Y, Bouhassira DCG, Arcila ME, Gonen M, Roboz GJ, Maslak P, Douer D, Frattini MG, Giralt S, Sadelain M, Brentjens R. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6:224ra225. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. J Clin Oncol 2006; 24:e20-e22. Ma Q, Gonzalo-Daganzo RM, Junghans RP. Genetically engineered T cells as adoptive immunotherapy of cancer. Cancer Chemother Biol Response Modif 2002; 20:315-341. Franzke A, Piao W, Lauber J, Gatzlaff P, Könecke C, Hansen W, Schmitt- Thomsen A, Hertenstein B, Buer J, Ganser A. G-CSF as immune regulator in T cells expressing the G-CSF receptor: Implications for transplantation and autoimmune diseases. Blood 2003; 102:734-739. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18:843-851. Brentjens R, Yeh R, Bernal Y, Rivière I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18:666-668. American Cancer Society. Prostate cancer, special section in cancer facts & figures 2010. Atlanta GA: American Cancer Society; 2010. pp. 23-37. Slovin SF, Wang X, Hullings M, Arauz G, Bartido S, Lewis JS, Schöder H, Zanzonico P, Scher HI, Rivière I. Chimeric antigen receptor (CAR+) modified T cells targeting prostate-specific membrane antigen (PSMA) in patients (pts) with castrate resistant metastatic prostate cancer (CMPC). J Clin Oncol 2013; 31:(suppl 6; abstr 72). Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, Assanah EO, Davies R, Espat NJ, Junghans RP. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res 2015; 21:3149-3159. Junghans RP, Safar M, Huberman MS, Ma Q, Ripley R, Leung S, Beecham EJ. Preclinical and phase I data of anti-CEA "designer T cell" therapy for cancer: A new immunotherapeutic modality. Proc Am Soc Clin Oncol 2001; 20:A1063. Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan C-C, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 2005; 174:2591-2601. Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 2004; 64:9160-9166. Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: Updated survival in the TAX 327 study. J Clin Oncol 2008; 26:242-245. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26:5233-5239. Sácha P, Zámecník J, Barinka C, Hlouchová K, Vícha A, Mlcochová P, Hilgert I, Eckschlager T, Konvalinka J. Expression of glutamate carboxypeptidase II in human brain. Neuroscience 2007; 144:1361-1372. Hussain M, Goldman B, Tangen C, Higano CS, Petrylak DP, Wilding G, Akdas AM, Small EJ, Donnelly BJ, Sundram SK, Burch PA, Dipaola RS, Crawford ED. Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: Data from Southwest Oncology Group Trials 9346 (intergroup study 0162) and 9916. J Clin Oncol 2009; 27:2450-2456. Junghans RP. Strategy escalation: An emerging paradigm for safe clinical development of T cell gene therapies. J Transl Med 2010; 8:55. Stein WD, Gulley JL, Schlom J, Madan RA, Dahut W, Figg WD, Ning YM, Arlen PM, Price D, Bates SE, Fojo T. Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: The growth rate constant as an indicator of therapeutic efficacy. Clin Cancer Res 2012; 17:907-917. De Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr., Saad F, Staffurth JN, Mainwaring P, Harland S, Flaig TW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Ellard SL, Fléchon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Loriot Y, Chieffo N, Kheoh T, Haqq CM, Scher HI, COU-AA-301 Investigators. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364:1995-1905. Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, Baccarini S, Maccari S, Ramoni C, Belardelli F, Proietti E. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res 2007; 13:644-653. Lo AS, Ma Q, Liu DL, Junghans RP. Anti-GD3 chimeric sFv-CD28/T- cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res 2010; 16:2769-2780. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3:95ra73. Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA, White DE. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. 2010; 10 2001; 344 2004; 64 2004; 61 2006; 30 2010; 16 2005; 174 2010 2005; 376 2010; 18 2000; 23 2011; 60 2007; 144 2015; 385 2011; 61 1989; 210 2008; 14 2005 2012; 39 2012; 17 2014; 371 2012; 367 2011; 3 2008; 363 2013; 5 2007; 13 2009; 27 2005; 23 2001; 20 1994; 86 2002; 20 2006; 24 2013; 31 2005; 106 2015; 21 1994; 12 2008; 26 2014; 74 2001; 118 2003; 102 2014; 6 2011; 365 2011; 364 2012; 119 2016; 66 1990; 50 2010; 8 e_1_2_6_51_1 e_1_2_6_32_1 Scheinberg DA (e_1_2_6_34_1) 2010 e_1_2_6_30_1 Konrad MW (e_1_2_6_17_1) 1990; 50 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 Slovin SF (e_1_2_6_48_1) 2013; 31 (e_1_2_6_3_1) 2010 e_1_2_6_5_1 Junghans RP (e_1_2_6_41_1) 2001; 20 e_1_2_6_24_1 e_1_2_6_49_1 Ma Q (e_1_2_6_9_1) 2002; 20 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 De Bono JS (e_1_2_6_7_1) 2005; 376 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371:1507-1517. – reference: American Cancer Society. Prostate cancer, special section in cancer facts & figures 2010. Atlanta GA: American Cancer Society; 2010. pp. 23-37. – reference: Junghans RP. Strategy escalation: An emerging paradigm for safe clinical development of T cell gene therapies. J Transl Med 2010; 8:55. – reference: De Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr., Saad F, Staffurth JN, Mainwaring P, Harland S, Flaig TW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Ellard SL, Fléchon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Loriot Y, Chieffo N, Kheoh T, Haqq CM, Scher HI, COU-AA-301 Investigators. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364:1995-1905. – reference: Brentjens R, Yeh R, Bernal Y, Rivière I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18:666-668. – reference: Madan RA, Bilusic M, Heery C, Schlom J, Gulley JL. Clinical evaluation of TRICOM vector therapeutic cancer vaccines. Semin Oncol 2012; 39:296-304. – reference: Junghans RP, Safar M, Huberman MS, Ma Q, Ripley R, Leung S, Beecham EJ. Preclinical and phase I data of anti-CEA "designer T cell" therapy for cancer: A new immunotherapeutic modality. Proc Am Soc Clin Oncol 2001; 20:A1063. – reference: Brentjens RJ, Davila ML, Rivière I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5:177ra8. – reference: Stein WD, Gulley JL, Schlom J, Madan RA, Dahut W, Figg WD, Ning YM, Arlen PM, Price D, Bates SE, Fojo T. Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: The growth rate constant as an indicator of therapeutic efficacy. Clin Cancer Res 2012; 17:907-917. – reference: Junghans RP. Is it safer CARs that we need, or safer rules of the road? Mol Ther 2010; 10:1742-1743. – reference: Slovin SF, Wang X, Hullings M, Arauz G, Bartido S, Lewis JS, Schöder H, Zanzonico P, Scher HI, Rivière I. Chimeric antigen receptor (CAR+) modified T cells targeting prostate-specific membrane antigen (PSMA) in patients (pts) with castrate resistant metastatic prostate cancer (CMPC). J Clin Oncol 2013; 31:(suppl 6; abstr 72). – reference: Antonarakis ES, Zahurak ML, Lin J, Keizman D, Carducci MA, Eisenberger MA. Changes in PSA kinetics predict metastasis-free survival in men with PSA-recurrent prostate cancer treated with nonhormonal agents: Combined analysis of 4 phase II trials. Cancer 2001; 118:1533-1542. – reference: Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Fillie AC, Abati A, Rosenberg SA. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23:2346-2357. – reference: Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor- transduced T cells. Blood 2012; 119:2709-2720. – reference: Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 2004; 64:9160-9166. – reference: Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA, White DE. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 1989; 210:474-484; discussion 484-485. – reference: Emtage PCR, Lo ASY, Liu DL, Gomes EM, Gonzalo- Daganzo R, Junghans RP. 2nd generation anti-CEA designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines and exhibit superior anti-tumor activity in vivo: A preclinical evaluation. Clin Cancer Res 2008; 14:8112-8122. – reference: Kinoshita Y, Kuratsukuri K, Landas S, Imaida K, Rovito PM Jr., Wang CY, Haas GP. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg 2006; 30:628-636. – reference: Beecham EJ, Ma QZ, Ripley R, Junghans RP. Coupling of CD28 co-stimulation to IgTCR molecules: Dynamics of T cell proliferation and death. J Immunother 2000; 23:631-642. – reference: Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2008; 363:411-422. – reference: Hussain M, Goldman B, Tangen C, Higano CS, Petrylak DP, Wilding G, Akdas AM, Small EJ, Donnelly BJ, Sundram SK, Burch PA, Dipaola RS, Crawford ED. Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: Data from Southwest Oncology Group Trials 9346 (intergroup study 0162) and 9916. J Clin Oncol 2009; 27:2450-2456. – reference: Ma Q, Safar M, Holmes E, Wang Y, Boynton AL, Jungans RP. Anti-prostate specific membrane antigen designer T cells for prostate cancer therapy. Prostate 2004; 61:12-25. – reference: Junghans RP, Manning W, Safar M, Quist W. Biventricular cardiac thrombosis during interleukin-2 infusion. N Engl J Med 2001; 344(11):859-860. – reference: Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: Updated survival in the TAX 327 study. J Clin Oncol 2008; 26:242-245. – reference: Lo AS, Ma Q, Liu DL, Junghans RP. Anti-GD3 chimeric sFv-CD28/T- cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res 2010; 16:2769-2780. – reference: Konrad MW, Hemstreet G, Hersh EM, Mansell PW, Mertelsmann R, Kolitz JE, Bradley EC. Pharmacokinetics of recombinant interleukin 2 in humans. Cancer Res 1990; 50:2009-2017. – reference: Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, Assanah EO, Davies R, Espat NJ, Junghans RP. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res 2015; 21:3149-3159. – reference: De Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L, Roessner M, Gupta S, Sartor AO, TROPIC Investigators. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2005; 376:1147-1154. – reference: Davila ML, Rivière I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olszewska M, Qu J, Wasielewska T, He Q, Fink M, Shinglot H, Youssif M, Satter M, Wang Y, Hosey J, Quintanilla H, Halton E, Bernal Y, Bouhassira DCG, Arcila ME, Gonen M, Roboz GJ, Maslak P, Douer D, Frattini MG, Giralt S, Sadelain M, Brentjens R. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6:224ra225. – reference: Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, Armstrong AJ, Flaig TW, Fléchon A, Mainwaring P, Fleming M, Hainsworth JD, Hirmand M, Selby B, Seely L, de Bono JS, AFFIRM Investigators. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367:1187-1197. – reference: Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. J Clin Oncol 2006; 24:e20-e22. – reference: Franzke A, Piao W, Lauber J, Gatzlaff P, Könecke C, Hansen W, Schmitt- Thomsen A, Hertenstein B, Buer J, Ganser A. G-CSF as immune regulator in T cells expressing the G-CSF receptor: Implications for transplantation and autoimmune diseases. Blood 2003; 102:734-739. – reference: Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015; 385:517-528. – reference: Ma Q, Gonzalo-Daganzo RM, Junghans RP. Genetically engineered T cells as adoptive immunotherapy of cancer. Cancer Chemother Biol Response Modif 2002; 20:315-341. – reference: Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3:95ra73. – reference: Sácha P, Zámecník J, Barinka C, Hlouchová K, Vícha A, Mlcochová P, Hilgert I, Eckschlager T, Konvalinka J. Expression of glutamate carboxypeptidase II in human brain. Neuroscience 2007; 144:1361-1372. – reference: Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, Baccarini S, Maccari S, Ramoni C, Belardelli F, Proietti E. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res 2007; 13:644-653. – reference: Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994; 86:1159-1166. – reference: Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan C-C, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 2005; 174:2591-2601. – reference: Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18:843-851. – reference: Moeller M, Haynes NM, Kershaw MH, Jackson JT, Teng MWL, Street SE, Cerutti L, Jane SM, Trapani JA, Smyth MJ, Darcy PK. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood 2005; 106:2995-3003. – reference: Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26:5233-5239. – reference: Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66:7-30. – reference: Yi H, Yu X, Guo C, Manjili MH, Repasky EA, Wang X- Y. Adoptive cell therapy of prostate cancer using female mice-derived T cells that react with prostate antigens. Cancer Immunol Immunother 2011; 60:349-360. – reference: Ma Q, Gomes EM, Lo AS, Junghans RP. Advanced generation anti- prostate specific membrane antigen designer T cells for prostate cancer immunotherapy. Prostate 2014; 74:286-296. – reference: Armstrong AJ, Eisenberger MA, Halabi S, Oudard S, Nanus DM, Petrylak DP, Sartor AO, Scher HI. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol 2011; 61:549-559. – reference: Schwartzentruber DJ, Hom SS, Dadmarz R, White DE, Yannelli JR, Steinberg SM, Rosenberg SA, Topalian SL. In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2. J Clin Oncol 1994; 12:1475-1483. – reference: Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365:725-733. – volume: 344 start-page: 859 issue: 11 year: 2001 end-page: 860 article-title: Biventricular cardiac thrombosis during interleukin‐2 infusion publication-title: N Engl J Med – year: 2005 – volume: 371 start-page: 1507 year: 2014 end-page: 1517 article-title: Chimeric antigen receptor T cells for sustained remissions in leukemia publication-title: N Engl J Med – volume: 20 start-page: A1063 year: 2001 article-title: Preclinical and phase I data of anti‐CEA “designer T cell” therapy for cancer: A new immunotherapeutic modality publication-title: Proc Am Soc Clin Oncol – volume: 365 start-page: 725 year: 2011 end-page: 733 article-title: Chimeric antigen receptor‐modified T cells in chronic lymphoid leukemia publication-title: N Engl J Med – start-page: 465 year: 2010 end-page: 494 – volume: 14 start-page: 8112 year: 2008 end-page: 8122 article-title: 2nd generation anti‐CEA designer T cells resist activation‐induced cell death, proliferate on tumor contact, secrete cytokines and exhibit superior anti‐tumor activity in vivo: A preclinical evaluation publication-title: Clin Cancer Res – volume: 16 start-page: 2769 year: 2010 end-page: 2780 article-title: Anti‐GD3 chimeric sFv‐CD28/T‐ cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors publication-title: Clin Cancer Res – volume: 119 start-page: 2709 year: 2012 end-page: 2720 article-title: B‐cell depletion and remissions of malignancy along with cytokine‐associated toxicity in a clinical trial of anti‐CD19 chimeric‐antigen‐receptor‐ transduced T cells publication-title: Blood – volume: 61 start-page: 12 year: 2004 end-page: 25 article-title: Anti‐prostate specific membrane antigen designer T cells for prostate cancer therapy publication-title: Prostate – volume: 12 start-page: 1475 year: 1994 end-page: 1483 article-title: In vitro predictors of therapeutic response in melanoma patients receiving tumor‐infiltrating lymphocytes and interleukin‐2 publication-title: J Clin Oncol – volume: 10 start-page: 1742 year: 2010 end-page: 1743 article-title: Is it safer CARs that we need, or safer rules of the road publication-title: Mol Ther – volume: 39 start-page: 296 year: 2012 end-page: 304 article-title: Clinical evaluation of TRICOM vector therapeutic cancer vaccines publication-title: Semin Oncol – volume: 367 start-page: 1187 year: 2012 end-page: 1197 article-title: Increased survival with enzalutamide in prostate cancer after chemotherapy publication-title: N Engl J Med – volume: 363 start-page: 411 year: 2008 end-page: 422 article-title: Sipuleucel‐T immunotherapy for castration‐resistant prostate cancer publication-title: N Engl J Med – volume: 5 start-page: 177ra8 year: 2013 article-title: CD19‐targeted T cells rapidly induce molecular remissions in adults with chemotherapy‐refractory acute lymphoblastic leukemia publication-title: Sci Transl Med – volume: 376 start-page: 1147 year: 2005 end-page: 1154 article-title: Prednisone plus cabazitaxel or mitoxantrone for metastatic castration‐resistant prostate cancer progressing after docetaxel treatment: A randomised open‐label trial publication-title: Lancet – volume: 74 start-page: 286 year: 2014 end-page: 296 article-title: Advanced generation anti‐ prostate specific membrane antigen designer T cells for prostate cancer immunotherapy publication-title: Prostate – volume: 30 start-page: 628 year: 2006 end-page: 636 article-title: Expression of prostate‐specific membrane antigen in normal and malignant human tissues publication-title: World J Surg – volume: 13 start-page: 644 year: 2007 end-page: 653 article-title: Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B‐cell and T‐cell homeostatic proliferation, and specific tumor infiltration publication-title: Clin Cancer Res – volume: 26 start-page: 5233 year: 2008 end-page: 5239 article-title: Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens publication-title: J Clin Oncol – start-page: 23 year: 2010 end-page: 37 – volume: 31 year: 2013 article-title: Chimeric antigen receptor (CAR ) modified T cells targeting prostate‐specific membrane antigen (PSMA) in patients (pts) with castrate resistant metastatic prostate cancer (CMPC) publication-title: J Clin Oncol – volume: 3 start-page: 95ra73 year: 2011 article-title: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia publication-title: Sci Transl Med – volume: 385 start-page: 517 year: 2015 end-page: 528 article-title: T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose‐escalation trial publication-title: Lancet – volume: 144 start-page: 1361 year: 2007 end-page: 1372 article-title: Expression of glutamate carboxypeptidase II in human brain publication-title: Neuroscience – volume: 64 start-page: 9160 year: 2004 end-page: 9166 article-title: Specific recognition and killing of glioblastoma multiforme by interleukin 13‐zetakine redirected cytolytic T cells publication-title: Cancer Res – volume: 61 start-page: 549 year: 2011 end-page: 559 article-title: Biomarkers in the management and treatment of men with metastatic castration‐resistant prostate cancer publication-title: Eur Urol – volume: 17 start-page: 907 year: 2012 end-page: 917 article-title: Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: The growth rate constant as an indicator of therapeutic efficacy publication-title: Clin Cancer Res – volume: 21 start-page: 3149 year: 2015 end-page: 3159 article-title: Phase I hepatic immunotherapy for metastases study of intra‐arterial chimeric antigen receptor‐modified T‐cell therapy for CEA+ liver metastases publication-title: Clin Cancer Res – volume: 106 start-page: 2995 year: 2005 end-page: 3003 article-title: Adoptive transfer of gene‐engineered CD4+ helper T cells induces potent primary and secondary tumor rejection publication-title: Blood – volume: 364 start-page: 1995 year: 2011 end-page: 1905 article-title: Abiraterone and increased survival in metastatic prostate cancer publication-title: N Engl J Med – volume: 20 start-page: 315 year: 2002 end-page: 341 article-title: Genetically engineered T cells as adoptive immunotherapy of cancer publication-title: Cancer Chemother Biol Response Modif – volume: 102 start-page: 734 year: 2003 end-page: 739 article-title: G‐CSF as immune regulator in T cells expressing the G‐CSF receptor: Implications for transplantation and autoimmune diseases publication-title: Blood – volume: 174 start-page: 2591 year: 2005 end-page: 2601 article-title: CD8+ T cell immunity against a tumor/self‐antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells publication-title: J Immunol – volume: 24 start-page: e20 year: 2006 end-page: e22 article-title: Treatment of metastatic renal cell carcinoma with autologous T‐lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience publication-title: J Clin Oncol – volume: 8 start-page: 55 year: 2010 article-title: Strategy escalation: An emerging paradigm for safe clinical development of T cell gene therapies publication-title: J Transl Med – volume: 118 start-page: 1533 year: 2001 end-page: 1542 article-title: Changes in PSA kinetics predict metastasis‐free survival in men with PSA‐recurrent prostate cancer treated with nonhormonal agents: Combined analysis of 4 phase II trials publication-title: Cancer – volume: 18 start-page: 843 year: 2010 end-page: 851 article-title: Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2 publication-title: Mol Ther – volume: 27 start-page: 2450 year: 2009 end-page: 2456 article-title: Prostate‐specific antigen progression predicts overall survival in patients with metastatic prostate cancer: Data from Southwest Oncology Group Trials 9346 (intergroup study 0162) and 9916 publication-title: J Clin Oncol – volume: 86 start-page: 1159 year: 1994 end-page: 1166 article-title: Treatment of patients with metastatic melanoma with autologous tumor‐infiltrating lymphocytes and interleukin 2 publication-title: J Natl Cancer Inst – volume: 26 start-page: 242 year: 2008 end-page: 245 article-title: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: Updated survival in the TAX 327 study publication-title: J Clin Oncol – volume: 18 start-page: 666 year: 2010 end-page: 668 article-title: Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial publication-title: Mol Ther – volume: 6 start-page: 224ra225 year: 2014 article-title: Efficacy and toxicity management of 19‐28z CAR T cell therapy in B cell acute lymphoblastic leukemia publication-title: Sci Transl Med – volume: 60 start-page: 349 year: 2011 end-page: 360 article-title: Adoptive cell therapy of prostate cancer using female mice‐derived T cells that react with prostate antigens publication-title: Cancer Immunol Immunother – volume: 23 start-page: 2346 year: 2005 end-page: 2357 article-title: Adoptive cell transfer therapy following non‐myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma publication-title: J Clin Oncol – volume: 50 start-page: 2009 year: 1990 end-page: 2017 article-title: Pharmacokinetics of recombinant interleukin 2 in humans publication-title: Cancer Res – volume: 23 start-page: 631 year: 2000 end-page: 642 article-title: Coupling of CD28 co‐stimulation to IgTCR molecules: Dynamics of T cell proliferation and death publication-title: J Immunother – volume: 66 start-page: 7 year: 2016 end-page: 30 article-title: Cancer statistics, 2016 publication-title: CA Cancer J Clin – volume: 210 start-page: 474 year: 1989 end-page: 484 article-title: Experience with the use of high‐dose interleukin‐2 in the treatment of 652 cancer patients publication-title: Ann Surg – ident: e_1_2_6_12_1 doi: 10.1002/pros.20073 – ident: e_1_2_6_23_1 doi: 10.1053/j.seminoncol.2012.02.010 – ident: e_1_2_6_38_1 doi: 10.1158/1078-0432.CCR-10-0043 – ident: e_1_2_6_31_1 – ident: e_1_2_6_47_1 doi: 10.1016/S0140-6736(14)61403-3 – ident: e_1_2_6_28_1 doi: 10.1038/mt.2010.24 – volume: 376 start-page: 1147 year: 2005 ident: e_1_2_6_7_1 article-title: Prednisone plus cabazitaxel or mitoxantrone for metastatic castration‐resistant prostate cancer progressing after docetaxel treatment: A randomised open‐label trial publication-title: Lancet doi: 10.1016/S0140-6736(10)61389-X – ident: e_1_2_6_44_1 doi: 10.1200/JCO.1994.12.7.1475 – ident: e_1_2_6_40_1 doi: 10.4049/jimmunol.174.5.2591 – ident: e_1_2_6_10_1 doi: 10.1056/NEJMoa1103849 – ident: e_1_2_6_36_1 doi: 10.1093/jnci/86.15.1159 – ident: e_1_2_6_22_1 doi: 10.1016/j.eururo.2011.11.009 – ident: e_1_2_6_42_1 doi: 10.1158/1078-0432.CCR-14-1421 – ident: e_1_2_6_32_1 doi: 10.1038/mt.2010.162 – ident: e_1_2_6_24_1 doi: 10.1158/1078-0432.CCR-10-1762 – ident: e_1_2_6_26_1 doi: 10.1016/j.neuroscience.2006.10.022 – volume: 50 start-page: 2009 year: 1990 ident: e_1_2_6_17_1 article-title: Pharmacokinetics of recombinant interleukin 2 in humans publication-title: Cancer Res – ident: e_1_2_6_45_1 doi: 10.1056/NEJMoa1407222 – start-page: 23 volume-title: Prostate cancer, special section in cancer facts & figures 2010 year: 2010 ident: e_1_2_6_3_1 – ident: e_1_2_6_18_1 doi: 10.1182/blood-2011-10-384388 – ident: e_1_2_6_25_1 doi: 10.1007/s00268-005-0544-5 – ident: e_1_2_6_14_1 doi: 10.1182/blood-2002-04-1200 – ident: e_1_2_6_20_1 doi: 10.1002/cncr.26437 – ident: e_1_2_6_4_1 doi: 10.1056/NEJMoa1014618 – start-page: 465 volume-title: Cancer chemotherapy and biotherapy year: 2010 ident: e_1_2_6_34_1 – ident: e_1_2_6_21_1 doi: 10.1200/JCO.2008.19.9810 – ident: e_1_2_6_27_1 doi: 10.1200/JCO.2006.05.9964 – ident: e_1_2_6_29_1 doi: 10.1186/1479-5876-8-55 – ident: e_1_2_6_5_1 doi: 10.1056/NEJMoa1207506 – ident: e_1_2_6_35_1 doi: 10.1097/00000658-198910000-00008 – ident: e_1_2_6_6_1 doi: 10.1200/JCO.2007.12.4008 – volume: 20 start-page: 315 year: 2002 ident: e_1_2_6_9_1 article-title: Genetically engineered T cells as adoptive immunotherapy of cancer publication-title: Cancer Chemother Biol Response Modif – ident: e_1_2_6_50_1 doi: 10.1158/1078-0432.CCR-07-4910 – ident: e_1_2_6_30_1 doi: 10.1038/mt.2010.31 – ident: e_1_2_6_33_1 doi: 10.1002/pros.22749 – ident: e_1_2_6_2_1 doi: 10.3322/caac.21332 – ident: e_1_2_6_8_1 doi: 10.1056/NEJMoa1001294 – volume: 20 start-page: A1063 year: 2001 ident: e_1_2_6_41_1 article-title: Preclinical and phase I data of anti‐CEA “designer T cell” therapy for cancer: A new immunotherapeutic modality publication-title: Proc Am Soc Clin Oncol – volume: 31 year: 2013 ident: e_1_2_6_48_1 article-title: Chimeric antigen receptor (CAR+) modified T cells targeting prostate‐specific membrane antigen (PSMA) in patients (pts) with castrate resistant metastatic prostate cancer (CMPC) publication-title: J Clin Oncol doi: 10.1200/jco.2013.31.6_suppl.72 – ident: e_1_2_6_49_1 doi: 10.1097/00002371-200011000-00004 – ident: e_1_2_6_46_1 doi: 10.1126/scitranslmed.3008226 – ident: e_1_2_6_13_1 doi: 10.1200/JCO.2005.00.240 – ident: e_1_2_6_16_1 doi: 10.1200/JCO.2008.16.5449 – ident: e_1_2_6_39_1 doi: 10.1182/blood-2004-12-4906 – ident: e_1_2_6_19_1 doi: 10.1126/scitranslmed.3005930 – ident: e_1_2_6_11_1 doi: 10.1126/scitranslmed.3002842 – ident: e_1_2_6_51_1 doi: 10.1158/0008-5472.CAN-04-0454 – ident: e_1_2_6_37_1 doi: 10.1007/s00262-010-0939-5 – ident: e_1_2_6_43_1 doi: 10.1056/NEJM200103153441118 – ident: e_1_2_6_15_1 doi: 10.1158/1078-0432.CCR-06-1209 |
SSID | ssj0010002 |
Score | 2.58172 |
Snippet | BACKGROUND
Chimeric antigen receptor (CAR)‐modified “designer” T cells (dTc, CAR‐T) against PSMA selectively target antigen‐expressing cells in vitro and... Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and eliminate tumors... BACKGROUND Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1257 |
SubjectTerms | Aged Antigens Antigens, Surface - blood CAR-T cells Cytokines designer T cells Drug dosages gene therapy Glutamate Carboxypeptidase II - antagonists & inhibitors Glutamate Carboxypeptidase II - blood Humans immunotherapy Interleukin-2 - administration & dosage Lymphocytes Male Middle Aged Prostate cancer Prostatic Neoplasms - blood Prostatic Neoplasms - diagnosis Prostatic Neoplasms - therapy PSA delay Receptors, Antigen, T-Cell - administration & dosage T-Lymphocytes - transplantation Transplantation, Autologous - methods Treatment Outcome Tumors |
Title | Phase I Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer: Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics as a Determinant of Clinical Response |
URI | https://api.istex.fr/ark:/67375/WNG-QNZJ02BM-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpros.23214 https://www.ncbi.nlm.nih.gov/pubmed/27324746 https://www.proquest.com/docview/1811591635 https://www.proquest.com/docview/1815700195 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ratRAFB5KBfGP90tqlRFFUMg2Ozu5iX_W1VoLu8Z0S4sgYW6py8ZENrug_vIRfBffyCfxnEk2pVIEhRCG5CQzyZzLx8yZbwh5FHPOhIw91zNs4PJAa1cKHrq57iPhWh4YheMd40mwd8j3j_3jDfJ8vRam4YfoBtzQMqy_RgMXst45JQ0FB1P3GO6zAw4Yk7UQEaUddxSOW9spBBZ6LnjqsOMmZTunj56JRhfwx345D2qeRa429OxeIR_WjW4yTua91VL21Lc_-Bz_96uuksstJqXDRomukQ1TXicXx-2s-w3yM_kIsY6-oVPUVlrldFguZ7--_0gOxkP60uaAmAUdDVO4NqUjUxQ1nZU0wRUlgGXpCFVr8YwmFVpgYWhawQngMrUDkri2ojxpyoVZzeFR1r2JJi25tv5aik8zVVMBB9TapfFgg1p604KmTc6vuUkOd19NR3tuu9mDq3gccZcLHgF4UX5f54JrZfpc6SCPI2VCrgOhmIR4LkWY61BLADK-9IzwtYK-jSQArVtks6xKc4dQnImNwHHFIM4DaUQYxD4LBtob6DhUzCFP1p2eqZYJHTfkKLKGw5ll2AuZ7QWHPOxkPzf8H-dKPba604mIxRwz5kI_O5q8zt5N3u977MU4O3LI9lq5stZZ1BmALACVAIx9hzzoboOZ49yNKE21sjK4E0E_BpnbjVJ2lQECZTzkgUOeWtX6S0OzJH17YEtb_yJ8l1wCoBg0SYzbZHO5WJl7AMaW8r41ut-9ADNF |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZgk4AvvL8UBhiBkEBKl7qOk_CtdIxurCVknTbxxXJsB6qGFPVFAj7xE_gv_CN-CXdOlmloQgIpiqLkEifx3fnR-fwcIU9izpnKYt_zLet6XBjjZYqHXm46SLiWC6sx3jEcicEB3z0KjurcHFwLU_FDNAE3tAznr9HAMSC9ecIaCh5m0WZYaOc8WceS3kidv5U27FEYuXaTCCz0PfDVYcNOyjZP7j01Hq3jr_1yFtg8jV3d4LN9paqwunCchZhzMm2vlllbf_uD0fG_v-squVzDUtqr9OgaOWfL6-TCsJ54v0F-Jh9huKM7dIwKS2c57ZXLya_vP5L9YY9uuTQQO6f9XgrnxrRvi2JBJyVNcFEJwFnaR-2av6DJDI2wsDSdwQ4QM3UxSVxeUX6ojgu7msKtrHkSTWp-bfO1VJ8mekEVbNBqk8mDL1QznBY0rdJ-7U1ysP1q3B94db0HT_M44h5XPAL8ooOOyRU32na4NiKPI21DboTSLIMhPVNhbkKTAZYJMt-qwGjo3CgDrHWLrJWz0t4hFCdjI_BdMYhzkVkVijhgomv8rolDzVrk2XGvS12ToWNNjkJWNM5MYi9I1wst8riR_VxRgJwp9dQpTyOi5lNMmgsDeTh6Ld-N3u_67OVQHrbIxrF2ydpfLCTgLMCVgI2DFnnUXAZLx-kbVdrZyslgMYJODDK3K61sGgMQynjIRYs8d7r1lxeVSfp23x3d_Rfhh-TiYDzck3s7ozf3yCXAjaLKadwga8v5yt4HbLbMHjgL_A3GQTdh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJk3c8M8IDDACIYGULnUdJ0HclJayDVpC1mkTErIc24GqIZn6IwFXPALvwhvxJBw7aaahCQmkKLKSk9iJzzn-ZB9_B6FHEaVEpJHnepp0XMqUclNBAzdTbUO4ljEtzXzHcMR2D-n-sX-8hp6v9sJU_BDNhJuxDOuvjYGfqGznlDQUHMy8RUyenQtogzIvMokb-klDHmUmru0aAgk8F1x10JCTkp3TZ88MRxvmz345D2ueha527BlcRh9Wra5CTqat5SJtyW9_EDr-72ddQZdqUIq7lRZdRWu6uIY2h_Wy-3X0M_4Egx3ew2OjrrjMcLdYTH59_xEfDLu4b4NA9Az3uglcG-OezvM5nhQ4NltKAMzintGt2TMcl8YEc42TEk6Al7GdkTSbK4qPVTnXyyk8Spo34bhm11ZfC_F5IudYwAG1NnE8pkE1v2mOkyroV99Ah4OX496uW2d7cCWNQupSQUNAL9Jvq0xQJXWbSsWyKJQ6oIoJSVIY0FMRZCpQKSAZP_W08JWEvg1TQFo30XpRFvoWwmYpNgTPFYE4ZakWAYt8wjrK66gokMRBT1adzmVNhW4ycuS8InEm3PQCt73goIeN7ElFAHKu1GOrO42ImE1NyFzg86PRK_5u9H7fIy-G_MhB2yvl4rW3mHNAWYAqARn7DnrQ3AY7N4s3otDl0sqYVATtCGS2KqVsKgMISmhAmYOeWtX6S0N5nLw9sKXb_yJ8H23G_QF_szd6fQddBNDIqoDGbbS-mC31XQBmi_Setb_fAS02EA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+I+Trial+of+Anti-PSMA+Designer+CAR-T+Cells+in+Prostate+Cancer%3A+Possible+Role+for+Interacting+Interleukin+2-T+Cell+Pharmacodynamics+as+a+Determinant+of+Clinical+Response&rft.jtitle=The+Prostate&rft.au=Junghans%2C+Richard+P&rft.au=Ma%2C+Qiangzhong&rft.au=Rathore%2C+Ritesh&rft.au=Gomes%2C+Erica+M&rft.date=2016-10-01&rft.issn=0270-4137&rft.eissn=1097-0045&rft.volume=76&rft.issue=14&rft.spage=1257&rft.epage=1270&rft_id=info:doi/10.1002%2Fpros.23214&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-4137&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-4137&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-4137&client=summon |