Phase I Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer: Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics as a Determinant of Clinical Response

BACKGROUND Chimeric antigen receptor (CAR)‐modified “designer” T cells (dTc, CAR‐T) against PSMA selectively target antigen‐expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate estab...

Full description

Saved in:
Bibliographic Details
Published inThe Prostate Vol. 76; no. 14; pp. 1257 - 1270
Main Authors Junghans, Richard P., Ma, Qiangzhong, Rathore, Ritesh, Gomes, Erica M., Bais, Anthony J., Lo, Agnes S.Y., Abedi, Mehrdad, Davies, Robin A., Cabral, Howard J., Al-Homsi, A. Samer, Cohen, Stephen I.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.10.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND Chimeric antigen receptor (CAR)‐modified “designer” T cells (dTc, CAR‐T) against PSMA selectively target antigen‐expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors. METHODS Patients under­went chemotherapy condi­tion­ing, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve ≥20% engraftment of infused activated T cells. RESULTS Six patients enrolled with doses prepared of whom five were treated. Patients received 109 or 1010 autologous T cells, achieving expansions of 20–560‐fold over 2 weeks and engraftments of 5–56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20‐fold with high engraftments of activated T cells (aTc) in an inverse correlation (P < 0.01). Clinically, no anti‐PSMA toxicities were noted, and no anti‐CAR reactivities were detected post‐treatment. Two‐of‐five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P = 0.6), instead correlating inversely with engraftment (P = 0.06) and directly with plasma IL2 (P = 0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti‐tumor activity under optimal (high) dTc engraftments. CONCLUSIONS Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmaco­dynamics of “drug–drug” interactions may have a critical impact on the efficacy of their co‐application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257–1270, 2016. © 2016 Wiley Periodicals, Inc.
AbstractList Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors. Patients under-went chemotherapy condi-tion-ing, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve ≥20% engraftment of infused activated T cells. Six patients enrolled with doses prepared of whom five were treated. Patients received 10(9) or 10(10) autologous T cells, achieving expansions of 20-560-fold over 2 weeks and engraftments of 5-56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20-fold with high engraftments of activated T cells (aTc) in an inverse correlation (P < 0.01). Clinically, no anti-PSMA toxicities were noted, and no anti-CAR reactivities were detected post-treatment. Two-of-five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P = 0.6), instead correlating inversely with engraftment (P = 0.06) and directly with plasma IL2 (P = 0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti-tumor activity under optimal (high) dTc engraftments. Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmaco-dynamics of "drug-drug" interactions may have a critical impact on the efficacy of their co-application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257-1270, 2016. © 2016 Wiley Periodicals, Inc.
BACKGROUND Chimeric antigen receptor (CAR)‐modified “designer” T cells (dTc, CAR‐T) against PSMA selectively target antigen‐expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors. METHODS Patients under­went chemotherapy condi­tion­ing, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve ≥20% engraftment of infused activated T cells. RESULTS Six patients enrolled with doses prepared of whom five were treated. Patients received 109 or 1010 autologous T cells, achieving expansions of 20–560‐fold over 2 weeks and engraftments of 5–56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20‐fold with high engraftments of activated T cells (aTc) in an inverse correlation (P < 0.01). Clinically, no anti‐PSMA toxicities were noted, and no anti‐CAR reactivities were detected post‐treatment. Two‐of‐five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P = 0.6), instead correlating inversely with engraftment (P = 0.06) and directly with plasma IL2 (P = 0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti‐tumor activity under optimal (high) dTc engraftments. CONCLUSIONS Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmaco­dynamics of “drug–drug” interactions may have a critical impact on the efficacy of their co‐application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257–1270, 2016. © 2016 Wiley Periodicals, Inc.
BACKGROUND Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors. METHODS Patients under-went chemotherapy condi-tion-ing, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve greater than or equal to 20% engraftment of infused activated T cells. RESULTS Six patients enrolled with doses prepared of whom five were treated. Patients received 10 super(9) or 10 super(10) autologous T cells, achieving expansions of 20-560-fold over 2 weeks and engraftments of 5-56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20-fold with high engraftments of activated T cells (aTc) in an inverse correlation (P<0.01). Clinically, no anti-PSMA toxicities were noted, and no anti-CAR reactivities were detected post-treatment. Two-of-five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P=0.6), instead correlating inversely with engraftment (P=0.06) and directly with plasma IL2 (P=0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti-tumor activity under optimal (high) dTc engraftments. CONCLUSIONS Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmaco-dynamics of "drug-drug" interactions may have a critical impact on the efficacy of their co-application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257-1270, 2016.
BACKGROUND Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors. METHODS Patients under­went chemotherapy condi­tion­ing, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve ≥20% engraftment of infused activated T cells. RESULTS Six patients enrolled with doses prepared of whom five were treated. Patients received 109 or 1010 autologous T cells, achieving expansions of 20-560-fold over 2 weeks and engraftments of 5-56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20-fold with high engraftments of activated T cells (aTc) in an inverse correlation (P<0.01). Clinically, no anti-PSMA toxicities were noted, and no anti-CAR reactivities were detected post-treatment. Two-of-five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P=0.6), instead correlating inversely with engraftment (P=0.06) and directly with plasma IL2 (P=0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti-tumor activity under optimal (high) dTc engraftments. CONCLUSIONS Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmaco­dynamics of "drug-drug" interactions may have a critical impact on the efficacy of their co-application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257-1270, 2016. © 2016 Wiley Periodicals, Inc.
Author Ma, Qiangzhong
Lo, Agnes S.Y.
Junghans, Richard P.
Bais, Anthony J.
Davies, Robin A.
Cabral, Howard J.
Cohen, Stephen I.
Al-Homsi, A. Samer
Gomes, Erica M.
Abedi, Mehrdad
Rathore, Ritesh
Author_xml – sequence: 1
  givenname: Richard P.
  surname: Junghans
  fullname: Junghans, Richard P.
  email: rjunghans@tuftsmedicalcenter.orgrich32323@yahoo.com
  organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
– sequence: 2
  givenname: Qiangzhong
  surname: Ma
  fullname: Ma, Qiangzhong
  organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
– sequence: 3
  givenname: Ritesh
  surname: Rathore
  fullname: Rathore, Ritesh
  organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence
– sequence: 4
  givenname: Erica M.
  surname: Gomes
  fullname: Gomes, Erica M.
  organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence
– sequence: 5
  givenname: Anthony J.
  surname: Bais
  fullname: Bais, Anthony J.
  organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence
– sequence: 6
  givenname: Agnes S.Y.
  surname: Lo
  fullname: Lo, Agnes S.Y.
  organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Providence, Rhode Island
– sequence: 7
  givenname: Mehrdad
  surname: Abedi
  fullname: Abedi, Mehrdad
  organization: Division of Hematology-Oncology, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence
– sequence: 8
  givenname: Robin A.
  surname: Davies
  fullname: Davies, Robin A.
  organization: Protocol Office, Roger Williams Medical Center, Rhode Island, Providence
– sequence: 9
  givenname: Howard J.
  surname: Cabral
  fullname: Cabral, Howard J.
  organization: Department of Biostatistics, Boston University School of Public Health, Massachusetts, Boston
– sequence: 10
  givenname: A. Samer
  surname: Al-Homsi
  fullname: Al-Homsi, A. Samer
  organization: Division of Hematologic Malignancies and Blood and Marrow Transplantation, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence
– sequence: 11
  givenname: Stephen I.
  surname: Cohen
  fullname: Cohen, Stephen I.
  organization: Division of Urology, Roger Williams Medical Center, Boston University School of Medicine, Rhode Island, Providence
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27324746$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFDQ-ALLFBSCl24sQTdtMAZVB_wnRQJTaW49wUt4k92IlgHop3xCEzLCqEZNlefOfeo3OO0IGxBhB6TskJJSR-s3HWn8RJTNkjNKMk5xEhLD1AMxJzEjGa8EN05P0dIQEn8RN0GPMkZpxlM_Sr_CY94CVeOy1bbBu8ML2OyuuLBX4HXt8acLhYrKI1LqBtPdYGl2FfL3vAhTQK3FtcWu911QJe2XA11uGl6cFJ1WtzO_1bGO6DNN7NwWGt66Sy9dbITiuPZThhY0A7baTpRytFq41WwdYK_MYaD0_R40a2Hp7t3mP05cP7dfExOr86WxaL80ixfM4iJtk8JblKad1IViugTNVZk88VcFZnUsWVAqgkb2peV2RO04qATGsVsppXJEuO0atpboj2-wC-F532KviWBuzgBQ0SHuLM04C-fIDe2cGZ4G6kaJrTLBmpFztqqDqoxcbpTrqt2BcRADIBKoTrHTRC6ZCxtqZ3UreCEjF2LcauxZ-ug-T1A8l-6j9hOsE_dAvb_5CiXF1d7zXRpNG-h59_NdLdi4wnPBU3l2fi8-XXTyQ-vRA3yW8u0smY
CODEN PRSTDS
CitedBy_id crossref_primary_10_3390_cancers15030663
crossref_primary_10_20517_jtgg_2023_46
crossref_primary_10_1080_1354750X_2021_2016973
crossref_primary_10_3389_fimmu_2019_02250
crossref_primary_10_1177_17562872231182219
crossref_primary_10_1016_j_lfs_2020_118300
crossref_primary_10_1136_jitc_2021_003633
crossref_primary_10_1016_j_biopha_2021_112512
crossref_primary_10_1016_j_canlet_2022_216007
crossref_primary_10_3389_fimmu_2023_1265751
crossref_primary_10_1200_EDBK_278853
crossref_primary_10_1002_jso_24627
crossref_primary_10_3390_cancers13205065
crossref_primary_10_1038_s41419_018_0278_6
crossref_primary_10_1155_2017_6915912
crossref_primary_10_1021_acsami_4c20275
crossref_primary_10_1016_j_omto_2023_04_007
crossref_primary_10_1158_1078_0432_CCR_17_0618
crossref_primary_10_1155_2019_3425291
crossref_primary_10_4103_bbrj_bbrj_64_20
crossref_primary_10_1016_j_omto_2020_06_014
crossref_primary_10_3389_fimmu_2022_1032403
crossref_primary_10_1007_s00280_018_3670_0
crossref_primary_10_1007_s11864_020_00808_x
crossref_primary_10_3389_fonc_2022_915171
crossref_primary_10_2217_imt_2019_0019
crossref_primary_10_3389_fimmu_2024_1362133
crossref_primary_10_1016_j_bbmt_2018_03_021
crossref_primary_10_1016_j_yexmp_2024_104904
crossref_primary_10_1080_1061186X_2024_2418344
crossref_primary_10_1093_neuros_nyab042
crossref_primary_10_1002_ila2_8
crossref_primary_10_1016_j_lfs_2021_119132
crossref_primary_10_1186_s13287_020_02128_1
crossref_primary_10_1177_1073274819870549
crossref_primary_10_1126_sciadv_adf0108
crossref_primary_10_1158_1078_0432_CCR_19_1835
crossref_primary_10_1038_cgt_2016_82
crossref_primary_10_4111_icu_20230348
crossref_primary_10_1038_s41571_021_00476_2
crossref_primary_10_1097_PPO_0000000000000516
crossref_primary_10_1002_cac2_12416
crossref_primary_10_3390_biomedicines9040392
crossref_primary_10_1016_j_addr_2022_114112
crossref_primary_10_1016_j_ctarc_2020_100164
crossref_primary_10_1097_CCO_0000000000000562
crossref_primary_10_1097_MOU_0000000000001115
crossref_primary_10_2174_1568009622666220928141727
crossref_primary_10_3390_cancers14112632
crossref_primary_10_1038_s41591_019_0564_6
crossref_primary_10_1177_17588359211053898
crossref_primary_10_1016_j_cyto_2023_156268
crossref_primary_10_1080_2162402X_2021_1899469
crossref_primary_10_1016_j_imlet_2019_06_002
crossref_primary_10_1007_s00120_023_02223_0
crossref_primary_10_1016_j_mehy_2019_109545
crossref_primary_10_1186_s13287_021_02510_7
crossref_primary_10_3390_ijms22062818
crossref_primary_10_1002_adhm_202100157
crossref_primary_10_2217_imt_2021_0228
crossref_primary_10_1159_000500488
crossref_primary_10_1016_j_bbcan_2023_188930
crossref_primary_10_3390_cancers13092244
crossref_primary_10_1038_gt_2017_81
crossref_primary_10_1089_hum_2017_251
crossref_primary_10_1007_s00432_022_04547_4
crossref_primary_10_3390_ijms21155484
crossref_primary_10_54097_hset_v36i_6270
crossref_primary_10_1016_j_hoc_2023_05_009
crossref_primary_10_1016_j_phrs_2024_107213
crossref_primary_10_1016_j_jcyt_2021_07_014
crossref_primary_10_3390_cancers15082236
crossref_primary_10_1016_S1470_2045_17_30327_3
crossref_primary_10_1158_1078_0432_CCR_21_1483
crossref_primary_10_3390_cancers14040967
crossref_primary_10_1007_s12032_025_02633_4
crossref_primary_10_32948_auo_2019_09_04
crossref_primary_10_4103_1319_2442_390259
crossref_primary_10_18632_oncotarget_14229
crossref_primary_10_3390_cells9061522
crossref_primary_10_1016_j_pharmthera_2019_107419
crossref_primary_10_1007_s12254_021_00703_7
crossref_primary_10_1097_MOU_0000000000000682
crossref_primary_10_54133_ajms_v6i2_726
crossref_primary_10_1002_cmdc_202100722
crossref_primary_10_1016_j_omto_2021_07_003
crossref_primary_10_1177_17588359231170474
crossref_primary_10_3390_curroncol29070400
crossref_primary_10_1016_j_bbcan_2022_188701
crossref_primary_10_1007_s42451_020_00172_y
crossref_primary_10_3390_ijms22020640
crossref_primary_10_1089_jir_2018_0019
crossref_primary_10_1007_s00120_020_01198_6
crossref_primary_10_1139_cjpp_2023_0083
crossref_primary_10_1016_j_canlet_2021_06_010
crossref_primary_10_1111_iju_13397
crossref_primary_10_1002_jcb_28250
crossref_primary_10_14245_ns_2244290_145
crossref_primary_10_56875_2589_0646_1028
crossref_primary_10_1002_jha2_356
crossref_primary_10_3389_fcell_2022_969020
crossref_primary_10_1038_s41416_023_02354_3
crossref_primary_10_1038_s41585_021_00488_8
crossref_primary_10_3390_cancers13153912
crossref_primary_10_1080_2162402X_2020_1777064
crossref_primary_10_1097_MOU_0000000000000462
crossref_primary_10_1007_s13402_021_00593_1
crossref_primary_10_1007_s40263_019_00687_3
crossref_primary_10_3389_fimmu_2017_01934
crossref_primary_10_1080_08820139_2023_2264332
crossref_primary_10_5858_arpa_2019_0632_CP
crossref_primary_10_1016_j_critrevonc_2024_104556
crossref_primary_10_1016_j_ctarc_2018_08_001
crossref_primary_10_1172_jci_insight_152014
crossref_primary_10_3390_cancers14225719
crossref_primary_10_1016_j_addr_2022_114421
crossref_primary_10_1038_s41467_024_53220_6
crossref_primary_10_3390_cancers11010047
crossref_primary_10_33590_emjurol_10313570
crossref_primary_10_1007_s00432_023_05152_9
crossref_primary_10_1186_s40364_020_00198_0
crossref_primary_10_1360_TB_2024_0428
crossref_primary_10_1016_j_addr_2019_01_007
crossref_primary_10_1038_s41423_021_00655_2
crossref_primary_10_1371_journal_pone_0247701
crossref_primary_10_1007_s00335_018_9756_5
crossref_primary_10_2217_fon_2019_0635
crossref_primary_10_3390_diagnostics9040161
crossref_primary_10_1007_s11427_019_9665_8
crossref_primary_10_1002_adhm_202304615
crossref_primary_10_1186_s13046_018_0817_0
crossref_primary_10_1007_s11912_021_01084_0
crossref_primary_10_1134_S0006297919070022
crossref_primary_10_1016_j_lfs_2023_122381
crossref_primary_10_3390_ijms23052569
crossref_primary_10_1038_s41568_021_00363_z
crossref_primary_10_1016_j_bioorg_2023_106889
crossref_primary_10_1016_j_ymthe_2020_09_015
crossref_primary_10_1080_07357907_2022_2125004
crossref_primary_10_3390_jcm13113202
crossref_primary_10_1016_j_eururo_2019_08_014
crossref_primary_10_1089_hum_2018_29069_aba
crossref_primary_10_30699_mmlj17_4_2_19
crossref_primary_10_1093_noajnl_vdab107
crossref_primary_10_2147_JIR_S368138
crossref_primary_10_3390_biology12020287
crossref_primary_10_1016_j_tmrv_2019_01_005
crossref_primary_10_1016_j_copbio_2018_01_025
crossref_primary_10_1016_j_xcrm_2022_100543
crossref_primary_10_3390_cancers15041052
crossref_primary_10_3390_biomedicines10081872
crossref_primary_10_1017_erm_2021_32
crossref_primary_10_1186_s13045_021_01067_5
crossref_primary_10_1080_14737140_2017_1395285
crossref_primary_10_1007_s12015_019_09901_7
crossref_primary_10_3389_fimmu_2023_1045024
crossref_primary_10_1155_2018_4263520
crossref_primary_10_1016_j_ymthe_2017_10_019
crossref_primary_10_1186_s40880_017_0216_5
crossref_primary_10_3389_fonc_2019_00248
crossref_primary_10_3390_cancers11020191
crossref_primary_10_36401_JIPO_22_7
crossref_primary_10_1016_j_trecan_2024_01_003
crossref_primary_10_1155_2023_7530794
crossref_primary_10_3390_uro2020010
crossref_primary_10_3390_cancers14205108
crossref_primary_10_1016_j_bcp_2019_06_002
crossref_primary_10_1200_EDBK_180328
crossref_primary_10_37349_emed_2021_00043
crossref_primary_10_3389_fonc_2021_722277
crossref_primary_10_1186_s13045_018_0568_6
crossref_primary_10_3390_cancers13215574
crossref_primary_10_1136_jitc_2020_001649
crossref_primary_10_1016_j_coph_2021_05_004
crossref_primary_10_1016_S0007_4551_19_30048_7
crossref_primary_10_1080_14712598_2018_1406916
crossref_primary_10_1158_2159_8290_CD_18_0297
crossref_primary_10_1146_annurev_bioeng_070620_033348
crossref_primary_10_12688_f1000research_14499_1
crossref_primary_10_32725_jab_2019_005
crossref_primary_10_1146_annurev_med_081522_031439
crossref_primary_10_1016_j_yexcr_2018_05_009
crossref_primary_10_1007_s11060_024_04876_z
crossref_primary_10_1007_s12032_022_01824_7
crossref_primary_10_3390_cancers13030549
crossref_primary_10_1177_1721727X221078727
crossref_primary_10_1016_j_yexcr_2021_112971
crossref_primary_10_1016_j_jcyt_2022_02_005
crossref_primary_10_1080_15384047_2024_2315655
crossref_primary_10_1016_j_jcyt_2019_07_004
crossref_primary_10_1038_s41391_020_00299_9
crossref_primary_10_1097_BS9_0000000000000025
crossref_primary_10_1038_s41598_017_10940_8
crossref_primary_10_3389_fimmu_2023_1113882
crossref_primary_10_1186_s12967_023_04292_3
crossref_primary_10_1002_cncr_30250
crossref_primary_10_3389_fonc_2019_00858
crossref_primary_10_3390_cancers12071752
crossref_primary_10_1007_s40263_018_0582_9
crossref_primary_10_3390_ijms25084170
crossref_primary_10_1016_j_clgc_2023_12_008
crossref_primary_10_3390_cancers11121857
crossref_primary_10_3390_cancers14235983
crossref_primary_10_1007_s11010_022_04568_0
crossref_primary_10_1038_s41391_021_00394_5
crossref_primary_10_3390_cancers12092567
Cites_doi 10.1002/pros.20073
10.1053/j.seminoncol.2012.02.010
10.1158/1078-0432.CCR-10-0043
10.1016/S0140-6736(14)61403-3
10.1038/mt.2010.24
10.1016/S0140-6736(10)61389-X
10.1200/JCO.1994.12.7.1475
10.4049/jimmunol.174.5.2591
10.1056/NEJMoa1103849
10.1093/jnci/86.15.1159
10.1016/j.eururo.2011.11.009
10.1158/1078-0432.CCR-14-1421
10.1038/mt.2010.162
10.1158/1078-0432.CCR-10-1762
10.1016/j.neuroscience.2006.10.022
10.1056/NEJMoa1407222
10.1182/blood-2011-10-384388
10.1007/s00268-005-0544-5
10.1182/blood-2002-04-1200
10.1002/cncr.26437
10.1056/NEJMoa1014618
10.1200/JCO.2008.19.9810
10.1200/JCO.2006.05.9964
10.1186/1479-5876-8-55
10.1056/NEJMoa1207506
10.1097/00000658-198910000-00008
10.1200/JCO.2007.12.4008
10.1158/1078-0432.CCR-07-4910
10.1038/mt.2010.31
10.1002/pros.22749
10.3322/caac.21332
10.1056/NEJMoa1001294
10.1200/jco.2013.31.6_suppl.72
10.1097/00002371-200011000-00004
10.1126/scitranslmed.3008226
10.1200/JCO.2005.00.240
10.1200/JCO.2008.16.5449
10.1182/blood-2004-12-4906
10.1126/scitranslmed.3005930
10.1126/scitranslmed.3002842
10.1158/0008-5472.CAN-04-0454
10.1007/s00262-010-0939-5
10.1056/NEJM200103153441118
10.1158/1078-0432.CCR-06-1209
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
8FD
FR3
H94
K9.
P64
RC3
DOI 10.1002/pros.23214
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE

AIDS and Cancer Research Abstracts
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0045
EndPage 1270
ExternalDocumentID 4148504851
27324746
10_1002_pros_23214
PROS23214
ark_67375_WNG_QNZJ02BM_W
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Clinical Trial, Phase I
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Prometheus Laboratories Inc.
– fundername: Novartis Corporation
– fundername: Amgen
– fundername: DOD Prostate Cancer Program
– fundername: Prostate Cancer Foundation
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWO
WXI
WXSBR
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AANHP
AAYXX
ACRPL
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H94
K9.
P64
RC3
ID FETCH-LOGICAL-c4984-4a48509c51dfa4dce14cd6f98ce74d6ac2bceeba7fd7db0815b0ea5dc4138b063
IEDL.DBID DR2
ISSN 0270-4137
IngestDate Fri Jul 11 04:10:17 EDT 2025
Sun Jul 13 03:35:53 EDT 2025
Wed Feb 19 02:43:39 EST 2025
Tue Jul 01 00:24:46 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Wed Jan 22 16:32:35 EST 2025
Wed Oct 30 09:53:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords gene therapy
designer T cells
PSA delay
CAR-T cells
immunotherapy
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4984-4a48509c51dfa4dce14cd6f98ce74d6ac2bceeba7fd7db0815b0ea5dc4138b063
Notes istex:049EDC2077D90F6AC4B1BA88975D57869DD51C45
ark:/67375/WNG-QNZJ02BM-W
Amgen
Prometheus Laboratories Inc.
Prostate Cancer Foundation
Novartis Corporation
ArticleID:PROS23214
DOD Prostate Cancer Program
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27324746
PQID 1811591635
PQPubID 1016443
PageCount 14
ParticipantIDs proquest_miscellaneous_1815700195
proquest_journals_1811591635
pubmed_primary_27324746
crossref_citationtrail_10_1002_pros_23214
crossref_primary_10_1002_pros_23214
wiley_primary_10_1002_pros_23214_PROS23214
istex_primary_ark_67375_WNG_QNZJ02BM_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 1, 2016
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 1, 2016
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle The Prostate
PublicationTitleAlternate Prostate
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2008; 363:411-422.
Antonarakis ES, Zahurak ML, Lin J, Keizman D, Carducci MA, Eisenberger MA. Changes in PSA kinetics predict metastasis-free survival in men with PSA-recurrent prostate cancer treated with nonhormonal agents: Combined analysis of 4 phase II trials. Cancer 2001; 118:1533-1542.
Beecham EJ, Ma QZ, Ripley R, Junghans RP. Coupling of CD28 co-stimulation to IgTCR molecules: Dynamics of T cell proliferation and death. J Immunother 2000; 23:631-642.
Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Fillie AC, Abati A, Rosenberg SA. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23:2346-2357.
Junghans RP. Is it safer CARs that we need, or safer rules of the road? Mol Ther 2010; 10:1742-1743.
Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015; 385:517-528.
Armstrong AJ, Eisenberger MA, Halabi S, Oudard S, Nanus DM, Petrylak DP, Sartor AO, Scher HI. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol 2011; 61:549-559.
Madan RA, Bilusic M, Heery C, Schlom J, Gulley JL. Clinical evaluation of TRICOM vector therapeutic cancer vaccines. Semin Oncol 2012; 39:296-304.
Junghans RP, Manning W, Safar M, Quist W. Biventricular cardiac thrombosis during interleukin-2 infusion. N Engl J Med 2001; 344(11):859-860.
Schwartzentruber DJ, Hom SS, Dadmarz R, White DE, Yannelli JR, Steinberg SM, Rosenberg SA, Topalian SL. In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2. J Clin Oncol 1994; 12:1475-1483.
Brentjens RJ, Davila ML, Rivière I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5:177ra8.
Emtage PCR, Lo ASY, Liu DL, Gomes EM, Gonzalo- Daganzo R, Junghans RP. 2nd generation anti-CEA designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines and exhibit superior anti-tumor activity in vivo: A preclinical evaluation. Clin Cancer Res 2008; 14:8112-8122.
Konrad MW, Hemstreet G, Hersh EM, Mansell PW, Mertelsmann R, Kolitz JE, Bradley EC. Pharmacokinetics of recombinant interleukin 2 in humans. Cancer Res 1990; 50:2009-2017.
Kinoshita Y, Kuratsukuri K, Landas S, Imaida K, Rovito PM Jr., Wang CY, Haas GP. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg 2006; 30:628-636.
Ma Q, Gomes EM, Lo AS, Junghans RP. Advanced generation anti- prostate specific membrane antigen designer T cells for prostate cancer immunotherapy. Prostate 2014; 74:286-296.
Davila ML, Rivière I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olszewska M, Qu J, Wasielewska T, He Q, Fink M, Shinglot H, Youssif M, Satter M, Wang Y, Hosey J, Quintanilla H, Halton E, Bernal Y, Bouhassira DCG, Arcila ME, Gonen M, Roboz GJ, Maslak P, Douer D, Frattini MG, Giralt S, Sadelain M, Brentjens R. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6:224ra225.
Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. J Clin Oncol 2006; 24:e20-e22.
Ma Q, Gonzalo-Daganzo RM, Junghans RP. Genetically engineered T cells as adoptive immunotherapy of cancer. Cancer Chemother Biol Response Modif 2002; 20:315-341.
Franzke A, Piao W, Lauber J, Gatzlaff P, Könecke C, Hansen W, Schmitt- Thomsen A, Hertenstein B, Buer J, Ganser A. G-CSF as immune regulator in T cells expressing the G-CSF receptor: Implications for transplantation and autoimmune diseases. Blood 2003; 102:734-739.
Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18:843-851.
Brentjens R, Yeh R, Bernal Y, Rivière I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18:666-668.
American Cancer Society. Prostate cancer, special section in cancer facts & figures 2010. Atlanta GA: American Cancer Society; 2010. pp. 23-37.
Slovin SF, Wang X, Hullings M, Arauz G, Bartido S, Lewis JS, Schöder H, Zanzonico P, Scher HI, Rivière I. Chimeric antigen receptor (CAR+) modified T cells targeting prostate-specific membrane antigen (PSMA) in patients (pts) with castrate resistant metastatic prostate cancer (CMPC). J Clin Oncol 2013; 31:(suppl 6; abstr 72).
Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, Assanah EO, Davies R, Espat NJ, Junghans RP. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res 2015; 21:3149-3159.
Junghans RP, Safar M, Huberman MS, Ma Q, Ripley R, Leung S, Beecham EJ. Preclinical and phase I data of anti-CEA "designer T cell" therapy for cancer: A new immunotherapeutic modality. Proc Am Soc Clin Oncol 2001; 20:A1063.
Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan C-C, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 2005; 174:2591-2601.
Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 2004; 64:9160-9166.
Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: Updated survival in the TAX 327 study. J Clin Oncol 2008; 26:242-245.
Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26:5233-5239.
Sácha P, Zámecník J, Barinka C, Hlouchová K, Vícha A, Mlcochová P, Hilgert I, Eckschlager T, Konvalinka J. Expression of glutamate carboxypeptidase II in human brain. Neuroscience 2007; 144:1361-1372.
Hussain M, Goldman B, Tangen C, Higano CS, Petrylak DP, Wilding G, Akdas AM, Small EJ, Donnelly BJ, Sundram SK, Burch PA, Dipaola RS, Crawford ED. Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: Data from Southwest Oncology Group Trials 9346 (intergroup study 0162) and 9916. J Clin Oncol 2009; 27:2450-2456.
Junghans RP. Strategy escalation: An emerging paradigm for safe clinical development of T cell gene therapies. J Transl Med 2010; 8:55.
Stein WD, Gulley JL, Schlom J, Madan RA, Dahut W, Figg WD, Ning YM, Arlen PM, Price D, Bates SE, Fojo T. Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: The growth rate constant as an indicator of therapeutic efficacy. Clin Cancer Res 2012; 17:907-917.
De Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr., Saad F, Staffurth JN, Mainwaring P, Harland S, Flaig TW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Ellard SL, Fléchon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Loriot Y, Chieffo N, Kheoh T, Haqq CM, Scher HI, COU-AA-301 Investigators. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364:1995-1905.
Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, Baccarini S, Maccari S, Ramoni C, Belardelli F, Proietti E. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res 2007; 13:644-653.
Lo AS, Ma Q, Liu DL, Junghans RP. Anti-GD3 chimeric sFv-CD28/T- cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res 2010; 16:2769-2780.
Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3:95ra73.
Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA, White DE. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients.
2010; 10
2001; 344
2004; 64
2004; 61
2006; 30
2010; 16
2005; 174
2010
2005; 376
2010; 18
2000; 23
2011; 60
2007; 144
2015; 385
2011; 61
1989; 210
2008; 14
2005
2012; 39
2012; 17
2014; 371
2012; 367
2011; 3
2008; 363
2013; 5
2007; 13
2009; 27
2005; 23
2001; 20
1994; 86
2002; 20
2006; 24
2013; 31
2005; 106
2015; 21
1994; 12
2008; 26
2014; 74
2001; 118
2003; 102
2014; 6
2011; 365
2011; 364
2012; 119
2016; 66
1990; 50
2010; 8
e_1_2_6_51_1
e_1_2_6_32_1
Scheinberg DA (e_1_2_6_34_1) 2010
e_1_2_6_30_1
Konrad MW (e_1_2_6_17_1) 1990; 50
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
Slovin SF (e_1_2_6_48_1) 2013; 31
(e_1_2_6_3_1) 2010
e_1_2_6_5_1
Junghans RP (e_1_2_6_41_1) 2001; 20
e_1_2_6_24_1
e_1_2_6_49_1
Ma Q (e_1_2_6_9_1) 2002; 20
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
De Bono JS (e_1_2_6_7_1) 2005; 376
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371:1507-1517.
– reference: American Cancer Society. Prostate cancer, special section in cancer facts & figures 2010. Atlanta GA: American Cancer Society; 2010. pp. 23-37.
– reference: Junghans RP. Strategy escalation: An emerging paradigm for safe clinical development of T cell gene therapies. J Transl Med 2010; 8:55.
– reference: De Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr., Saad F, Staffurth JN, Mainwaring P, Harland S, Flaig TW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Ellard SL, Fléchon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Loriot Y, Chieffo N, Kheoh T, Haqq CM, Scher HI, COU-AA-301 Investigators. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364:1995-1905.
– reference: Brentjens R, Yeh R, Bernal Y, Rivière I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18:666-668.
– reference: Madan RA, Bilusic M, Heery C, Schlom J, Gulley JL. Clinical evaluation of TRICOM vector therapeutic cancer vaccines. Semin Oncol 2012; 39:296-304.
– reference: Junghans RP, Safar M, Huberman MS, Ma Q, Ripley R, Leung S, Beecham EJ. Preclinical and phase I data of anti-CEA "designer T cell" therapy for cancer: A new immunotherapeutic modality. Proc Am Soc Clin Oncol 2001; 20:A1063.
– reference: Brentjens RJ, Davila ML, Rivière I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5:177ra8.
– reference: Stein WD, Gulley JL, Schlom J, Madan RA, Dahut W, Figg WD, Ning YM, Arlen PM, Price D, Bates SE, Fojo T. Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: The growth rate constant as an indicator of therapeutic efficacy. Clin Cancer Res 2012; 17:907-917.
– reference: Junghans RP. Is it safer CARs that we need, or safer rules of the road? Mol Ther 2010; 10:1742-1743.
– reference: Slovin SF, Wang X, Hullings M, Arauz G, Bartido S, Lewis JS, Schöder H, Zanzonico P, Scher HI, Rivière I. Chimeric antigen receptor (CAR+) modified T cells targeting prostate-specific membrane antigen (PSMA) in patients (pts) with castrate resistant metastatic prostate cancer (CMPC). J Clin Oncol 2013; 31:(suppl 6; abstr 72).
– reference: Antonarakis ES, Zahurak ML, Lin J, Keizman D, Carducci MA, Eisenberger MA. Changes in PSA kinetics predict metastasis-free survival in men with PSA-recurrent prostate cancer treated with nonhormonal agents: Combined analysis of 4 phase II trials. Cancer 2001; 118:1533-1542.
– reference: Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Fillie AC, Abati A, Rosenberg SA. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23:2346-2357.
– reference: Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor- transduced T cells. Blood 2012; 119:2709-2720.
– reference: Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 2004; 64:9160-9166.
– reference: Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA, White DE. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 1989; 210:474-484; discussion 484-485.
– reference: Emtage PCR, Lo ASY, Liu DL, Gomes EM, Gonzalo- Daganzo R, Junghans RP. 2nd generation anti-CEA designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines and exhibit superior anti-tumor activity in vivo: A preclinical evaluation. Clin Cancer Res 2008; 14:8112-8122.
– reference: Kinoshita Y, Kuratsukuri K, Landas S, Imaida K, Rovito PM Jr., Wang CY, Haas GP. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg 2006; 30:628-636.
– reference: Beecham EJ, Ma QZ, Ripley R, Junghans RP. Coupling of CD28 co-stimulation to IgTCR molecules: Dynamics of T cell proliferation and death. J Immunother 2000; 23:631-642.
– reference: Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2008; 363:411-422.
– reference: Hussain M, Goldman B, Tangen C, Higano CS, Petrylak DP, Wilding G, Akdas AM, Small EJ, Donnelly BJ, Sundram SK, Burch PA, Dipaola RS, Crawford ED. Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: Data from Southwest Oncology Group Trials 9346 (intergroup study 0162) and 9916. J Clin Oncol 2009; 27:2450-2456.
– reference: Ma Q, Safar M, Holmes E, Wang Y, Boynton AL, Jungans RP. Anti-prostate specific membrane antigen designer T cells for prostate cancer therapy. Prostate 2004; 61:12-25.
– reference: Junghans RP, Manning W, Safar M, Quist W. Biventricular cardiac thrombosis during interleukin-2 infusion. N Engl J Med 2001; 344(11):859-860.
– reference: Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: Updated survival in the TAX 327 study. J Clin Oncol 2008; 26:242-245.
– reference: Lo AS, Ma Q, Liu DL, Junghans RP. Anti-GD3 chimeric sFv-CD28/T- cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res 2010; 16:2769-2780.
– reference: Konrad MW, Hemstreet G, Hersh EM, Mansell PW, Mertelsmann R, Kolitz JE, Bradley EC. Pharmacokinetics of recombinant interleukin 2 in humans. Cancer Res 1990; 50:2009-2017.
– reference: Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, Assanah EO, Davies R, Espat NJ, Junghans RP. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res 2015; 21:3149-3159.
– reference: De Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L, Roessner M, Gupta S, Sartor AO, TROPIC Investigators. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2005; 376:1147-1154.
– reference: Davila ML, Rivière I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olszewska M, Qu J, Wasielewska T, He Q, Fink M, Shinglot H, Youssif M, Satter M, Wang Y, Hosey J, Quintanilla H, Halton E, Bernal Y, Bouhassira DCG, Arcila ME, Gonen M, Roboz GJ, Maslak P, Douer D, Frattini MG, Giralt S, Sadelain M, Brentjens R. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6:224ra225.
– reference: Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, Armstrong AJ, Flaig TW, Fléchon A, Mainwaring P, Fleming M, Hainsworth JD, Hirmand M, Selby B, Seely L, de Bono JS, AFFIRM Investigators. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367:1187-1197.
– reference: Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. J Clin Oncol 2006; 24:e20-e22.
– reference: Franzke A, Piao W, Lauber J, Gatzlaff P, Könecke C, Hansen W, Schmitt- Thomsen A, Hertenstein B, Buer J, Ganser A. G-CSF as immune regulator in T cells expressing the G-CSF receptor: Implications for transplantation and autoimmune diseases. Blood 2003; 102:734-739.
– reference: Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015; 385:517-528.
– reference: Ma Q, Gonzalo-Daganzo RM, Junghans RP. Genetically engineered T cells as adoptive immunotherapy of cancer. Cancer Chemother Biol Response Modif 2002; 20:315-341.
– reference: Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3:95ra73.
– reference: Sácha P, Zámecník J, Barinka C, Hlouchová K, Vícha A, Mlcochová P, Hilgert I, Eckschlager T, Konvalinka J. Expression of glutamate carboxypeptidase II in human brain. Neuroscience 2007; 144:1361-1372.
– reference: Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, Baccarini S, Maccari S, Ramoni C, Belardelli F, Proietti E. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res 2007; 13:644-653.
– reference: Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994; 86:1159-1166.
– reference: Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan C-C, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 2005; 174:2591-2601.
– reference: Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18:843-851.
– reference: Moeller M, Haynes NM, Kershaw MH, Jackson JT, Teng MWL, Street SE, Cerutti L, Jane SM, Trapani JA, Smyth MJ, Darcy PK. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood 2005; 106:2995-3003.
– reference: Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26:5233-5239.
– reference: Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66:7-30.
– reference: Yi H, Yu X, Guo C, Manjili MH, Repasky EA, Wang X- Y. Adoptive cell therapy of prostate cancer using female mice-derived T cells that react with prostate antigens. Cancer Immunol Immunother 2011; 60:349-360.
– reference: Ma Q, Gomes EM, Lo AS, Junghans RP. Advanced generation anti- prostate specific membrane antigen designer T cells for prostate cancer immunotherapy. Prostate 2014; 74:286-296.
– reference: Armstrong AJ, Eisenberger MA, Halabi S, Oudard S, Nanus DM, Petrylak DP, Sartor AO, Scher HI. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol 2011; 61:549-559.
– reference: Schwartzentruber DJ, Hom SS, Dadmarz R, White DE, Yannelli JR, Steinberg SM, Rosenberg SA, Topalian SL. In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2. J Clin Oncol 1994; 12:1475-1483.
– reference: Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365:725-733.
– volume: 344
  start-page: 859
  issue: 11
  year: 2001
  end-page: 860
  article-title: Biventricular cardiac thrombosis during interleukin‐2 infusion
  publication-title: N Engl J Med
– year: 2005
– volume: 371
  start-page: 1507
  year: 2014
  end-page: 1517
  article-title: Chimeric antigen receptor T cells for sustained remissions in leukemia
  publication-title: N Engl J Med
– volume: 20
  start-page: A1063
  year: 2001
  article-title: Preclinical and phase I data of anti‐CEA “designer T cell” therapy for cancer: A new immunotherapeutic modality
  publication-title: Proc Am Soc Clin Oncol
– volume: 365
  start-page: 725
  year: 2011
  end-page: 733
  article-title: Chimeric antigen receptor‐modified T cells in chronic lymphoid leukemia
  publication-title: N Engl J Med
– start-page: 465
  year: 2010
  end-page: 494
– volume: 14
  start-page: 8112
  year: 2008
  end-page: 8122
  article-title: 2nd generation anti‐CEA designer T cells resist activation‐induced cell death, proliferate on tumor contact, secrete cytokines and exhibit superior anti‐tumor activity in vivo: A preclinical evaluation
  publication-title: Clin Cancer Res
– volume: 16
  start-page: 2769
  year: 2010
  end-page: 2780
  article-title: Anti‐GD3 chimeric sFv‐CD28/T‐ cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors
  publication-title: Clin Cancer Res
– volume: 119
  start-page: 2709
  year: 2012
  end-page: 2720
  article-title: B‐cell depletion and remissions of malignancy along with cytokine‐associated toxicity in a clinical trial of anti‐CD19 chimeric‐antigen‐receptor‐ transduced T cells
  publication-title: Blood
– volume: 61
  start-page: 12
  year: 2004
  end-page: 25
  article-title: Anti‐prostate specific membrane antigen designer T cells for prostate cancer therapy
  publication-title: Prostate
– volume: 12
  start-page: 1475
  year: 1994
  end-page: 1483
  article-title: In vitro predictors of therapeutic response in melanoma patients receiving tumor‐infiltrating lymphocytes and interleukin‐2
  publication-title: J Clin Oncol
– volume: 10
  start-page: 1742
  year: 2010
  end-page: 1743
  article-title: Is it safer CARs that we need, or safer rules of the road
  publication-title: Mol Ther
– volume: 39
  start-page: 296
  year: 2012
  end-page: 304
  article-title: Clinical evaluation of TRICOM vector therapeutic cancer vaccines
  publication-title: Semin Oncol
– volume: 367
  start-page: 1187
  year: 2012
  end-page: 1197
  article-title: Increased survival with enzalutamide in prostate cancer after chemotherapy
  publication-title: N Engl J Med
– volume: 363
  start-page: 411
  year: 2008
  end-page: 422
  article-title: Sipuleucel‐T immunotherapy for castration‐resistant prostate cancer
  publication-title: N Engl J Med
– volume: 5
  start-page: 177ra8
  year: 2013
  article-title: CD19‐targeted T cells rapidly induce molecular remissions in adults with chemotherapy‐refractory acute lymphoblastic leukemia
  publication-title: Sci Transl Med
– volume: 376
  start-page: 1147
  year: 2005
  end-page: 1154
  article-title: Prednisone plus cabazitaxel or mitoxantrone for metastatic castration‐resistant prostate cancer progressing after docetaxel treatment: A randomised open‐label trial
  publication-title: Lancet
– volume: 74
  start-page: 286
  year: 2014
  end-page: 296
  article-title: Advanced generation anti‐ prostate specific membrane antigen designer T cells for prostate cancer immunotherapy
  publication-title: Prostate
– volume: 30
  start-page: 628
  year: 2006
  end-page: 636
  article-title: Expression of prostate‐specific membrane antigen in normal and malignant human tissues
  publication-title: World J Surg
– volume: 13
  start-page: 644
  year: 2007
  end-page: 653
  article-title: Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B‐cell and T‐cell homeostatic proliferation, and specific tumor infiltration
  publication-title: Clin Cancer Res
– volume: 26
  start-page: 5233
  year: 2008
  end-page: 5239
  article-title: Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens
  publication-title: J Clin Oncol
– start-page: 23
  year: 2010
  end-page: 37
– volume: 31
  year: 2013
  article-title: Chimeric antigen receptor (CAR ) modified T cells targeting prostate‐specific membrane antigen (PSMA) in patients (pts) with castrate resistant metastatic prostate cancer (CMPC)
  publication-title: J Clin Oncol
– volume: 3
  start-page: 95ra73
  year: 2011
  article-title: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia
  publication-title: Sci Transl Med
– volume: 385
  start-page: 517
  year: 2015
  end-page: 528
  article-title: T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose‐escalation trial
  publication-title: Lancet
– volume: 144
  start-page: 1361
  year: 2007
  end-page: 1372
  article-title: Expression of glutamate carboxypeptidase II in human brain
  publication-title: Neuroscience
– volume: 64
  start-page: 9160
  year: 2004
  end-page: 9166
  article-title: Specific recognition and killing of glioblastoma multiforme by interleukin 13‐zetakine redirected cytolytic T cells
  publication-title: Cancer Res
– volume: 61
  start-page: 549
  year: 2011
  end-page: 559
  article-title: Biomarkers in the management and treatment of men with metastatic castration‐resistant prostate cancer
  publication-title: Eur Urol
– volume: 17
  start-page: 907
  year: 2012
  end-page: 917
  article-title: Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: The growth rate constant as an indicator of therapeutic efficacy
  publication-title: Clin Cancer Res
– volume: 21
  start-page: 3149
  year: 2015
  end-page: 3159
  article-title: Phase I hepatic immunotherapy for metastases study of intra‐arterial chimeric antigen receptor‐modified T‐cell therapy for CEA+ liver metastases
  publication-title: Clin Cancer Res
– volume: 106
  start-page: 2995
  year: 2005
  end-page: 3003
  article-title: Adoptive transfer of gene‐engineered CD4+ helper T cells induces potent primary and secondary tumor rejection
  publication-title: Blood
– volume: 364
  start-page: 1995
  year: 2011
  end-page: 1905
  article-title: Abiraterone and increased survival in metastatic prostate cancer
  publication-title: N Engl J Med
– volume: 20
  start-page: 315
  year: 2002
  end-page: 341
  article-title: Genetically engineered T cells as adoptive immunotherapy of cancer
  publication-title: Cancer Chemother Biol Response Modif
– volume: 102
  start-page: 734
  year: 2003
  end-page: 739
  article-title: G‐CSF as immune regulator in T cells expressing the G‐CSF receptor: Implications for transplantation and autoimmune diseases
  publication-title: Blood
– volume: 174
  start-page: 2591
  year: 2005
  end-page: 2601
  article-title: CD8+ T cell immunity against a tumor/self‐antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells
  publication-title: J Immunol
– volume: 24
  start-page: e20
  year: 2006
  end-page: e22
  article-title: Treatment of metastatic renal cell carcinoma with autologous T‐lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience
  publication-title: J Clin Oncol
– volume: 8
  start-page: 55
  year: 2010
  article-title: Strategy escalation: An emerging paradigm for safe clinical development of T cell gene therapies
  publication-title: J Transl Med
– volume: 118
  start-page: 1533
  year: 2001
  end-page: 1542
  article-title: Changes in PSA kinetics predict metastasis‐free survival in men with PSA‐recurrent prostate cancer treated with nonhormonal agents: Combined analysis of 4 phase II trials
  publication-title: Cancer
– volume: 18
  start-page: 843
  year: 2010
  end-page: 851
  article-title: Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2
  publication-title: Mol Ther
– volume: 27
  start-page: 2450
  year: 2009
  end-page: 2456
  article-title: Prostate‐specific antigen progression predicts overall survival in patients with metastatic prostate cancer: Data from Southwest Oncology Group Trials 9346 (intergroup study 0162) and 9916
  publication-title: J Clin Oncol
– volume: 86
  start-page: 1159
  year: 1994
  end-page: 1166
  article-title: Treatment of patients with metastatic melanoma with autologous tumor‐infiltrating lymphocytes and interleukin 2
  publication-title: J Natl Cancer Inst
– volume: 26
  start-page: 242
  year: 2008
  end-page: 245
  article-title: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: Updated survival in the TAX 327 study
  publication-title: J Clin Oncol
– volume: 18
  start-page: 666
  year: 2010
  end-page: 668
  article-title: Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial
  publication-title: Mol Ther
– volume: 6
  start-page: 224ra225
  year: 2014
  article-title: Efficacy and toxicity management of 19‐28z CAR T cell therapy in B cell acute lymphoblastic leukemia
  publication-title: Sci Transl Med
– volume: 60
  start-page: 349
  year: 2011
  end-page: 360
  article-title: Adoptive cell therapy of prostate cancer using female mice‐derived T cells that react with prostate antigens
  publication-title: Cancer Immunol Immunother
– volume: 23
  start-page: 2346
  year: 2005
  end-page: 2357
  article-title: Adoptive cell transfer therapy following non‐myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma
  publication-title: J Clin Oncol
– volume: 50
  start-page: 2009
  year: 1990
  end-page: 2017
  article-title: Pharmacokinetics of recombinant interleukin 2 in humans
  publication-title: Cancer Res
– volume: 23
  start-page: 631
  year: 2000
  end-page: 642
  article-title: Coupling of CD28 co‐stimulation to IgTCR molecules: Dynamics of T cell proliferation and death
  publication-title: J Immunother
– volume: 66
  start-page: 7
  year: 2016
  end-page: 30
  article-title: Cancer statistics, 2016
  publication-title: CA Cancer J Clin
– volume: 210
  start-page: 474
  year: 1989
  end-page: 484
  article-title: Experience with the use of high‐dose interleukin‐2 in the treatment of 652 cancer patients
  publication-title: Ann Surg
– ident: e_1_2_6_12_1
  doi: 10.1002/pros.20073
– ident: e_1_2_6_23_1
  doi: 10.1053/j.seminoncol.2012.02.010
– ident: e_1_2_6_38_1
  doi: 10.1158/1078-0432.CCR-10-0043
– ident: e_1_2_6_31_1
– ident: e_1_2_6_47_1
  doi: 10.1016/S0140-6736(14)61403-3
– ident: e_1_2_6_28_1
  doi: 10.1038/mt.2010.24
– volume: 376
  start-page: 1147
  year: 2005
  ident: e_1_2_6_7_1
  article-title: Prednisone plus cabazitaxel or mitoxantrone for metastatic castration‐resistant prostate cancer progressing after docetaxel treatment: A randomised open‐label trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)61389-X
– ident: e_1_2_6_44_1
  doi: 10.1200/JCO.1994.12.7.1475
– ident: e_1_2_6_40_1
  doi: 10.4049/jimmunol.174.5.2591
– ident: e_1_2_6_10_1
  doi: 10.1056/NEJMoa1103849
– ident: e_1_2_6_36_1
  doi: 10.1093/jnci/86.15.1159
– ident: e_1_2_6_22_1
  doi: 10.1016/j.eururo.2011.11.009
– ident: e_1_2_6_42_1
  doi: 10.1158/1078-0432.CCR-14-1421
– ident: e_1_2_6_32_1
  doi: 10.1038/mt.2010.162
– ident: e_1_2_6_24_1
  doi: 10.1158/1078-0432.CCR-10-1762
– ident: e_1_2_6_26_1
  doi: 10.1016/j.neuroscience.2006.10.022
– volume: 50
  start-page: 2009
  year: 1990
  ident: e_1_2_6_17_1
  article-title: Pharmacokinetics of recombinant interleukin 2 in humans
  publication-title: Cancer Res
– ident: e_1_2_6_45_1
  doi: 10.1056/NEJMoa1407222
– start-page: 23
  volume-title: Prostate cancer, special section in cancer facts & figures 2010
  year: 2010
  ident: e_1_2_6_3_1
– ident: e_1_2_6_18_1
  doi: 10.1182/blood-2011-10-384388
– ident: e_1_2_6_25_1
  doi: 10.1007/s00268-005-0544-5
– ident: e_1_2_6_14_1
  doi: 10.1182/blood-2002-04-1200
– ident: e_1_2_6_20_1
  doi: 10.1002/cncr.26437
– ident: e_1_2_6_4_1
  doi: 10.1056/NEJMoa1014618
– start-page: 465
  volume-title: Cancer chemotherapy and biotherapy
  year: 2010
  ident: e_1_2_6_34_1
– ident: e_1_2_6_21_1
  doi: 10.1200/JCO.2008.19.9810
– ident: e_1_2_6_27_1
  doi: 10.1200/JCO.2006.05.9964
– ident: e_1_2_6_29_1
  doi: 10.1186/1479-5876-8-55
– ident: e_1_2_6_5_1
  doi: 10.1056/NEJMoa1207506
– ident: e_1_2_6_35_1
  doi: 10.1097/00000658-198910000-00008
– ident: e_1_2_6_6_1
  doi: 10.1200/JCO.2007.12.4008
– volume: 20
  start-page: 315
  year: 2002
  ident: e_1_2_6_9_1
  article-title: Genetically engineered T cells as adoptive immunotherapy of cancer
  publication-title: Cancer Chemother Biol Response Modif
– ident: e_1_2_6_50_1
  doi: 10.1158/1078-0432.CCR-07-4910
– ident: e_1_2_6_30_1
  doi: 10.1038/mt.2010.31
– ident: e_1_2_6_33_1
  doi: 10.1002/pros.22749
– ident: e_1_2_6_2_1
  doi: 10.3322/caac.21332
– ident: e_1_2_6_8_1
  doi: 10.1056/NEJMoa1001294
– volume: 20
  start-page: A1063
  year: 2001
  ident: e_1_2_6_41_1
  article-title: Preclinical and phase I data of anti‐CEA “designer T cell” therapy for cancer: A new immunotherapeutic modality
  publication-title: Proc Am Soc Clin Oncol
– volume: 31
  year: 2013
  ident: e_1_2_6_48_1
  article-title: Chimeric antigen receptor (CAR+) modified T cells targeting prostate‐specific membrane antigen (PSMA) in patients (pts) with castrate resistant metastatic prostate cancer (CMPC)
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2013.31.6_suppl.72
– ident: e_1_2_6_49_1
  doi: 10.1097/00002371-200011000-00004
– ident: e_1_2_6_46_1
  doi: 10.1126/scitranslmed.3008226
– ident: e_1_2_6_13_1
  doi: 10.1200/JCO.2005.00.240
– ident: e_1_2_6_16_1
  doi: 10.1200/JCO.2008.16.5449
– ident: e_1_2_6_39_1
  doi: 10.1182/blood-2004-12-4906
– ident: e_1_2_6_19_1
  doi: 10.1126/scitranslmed.3005930
– ident: e_1_2_6_11_1
  doi: 10.1126/scitranslmed.3002842
– ident: e_1_2_6_51_1
  doi: 10.1158/0008-5472.CAN-04-0454
– ident: e_1_2_6_37_1
  doi: 10.1007/s00262-010-0939-5
– ident: e_1_2_6_43_1
  doi: 10.1056/NEJM200103153441118
– ident: e_1_2_6_15_1
  doi: 10.1158/1078-0432.CCR-06-1209
SSID ssj0010002
Score 2.58172
Snippet BACKGROUND Chimeric antigen receptor (CAR)‐modified “designer” T cells (dTc, CAR‐T) against PSMA selectively target antigen‐expressing cells in vitro and...
Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and eliminate tumors...
BACKGROUND Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1257
SubjectTerms Aged
Antigens
Antigens, Surface - blood
CAR-T cells
Cytokines
designer T cells
Drug dosages
gene therapy
Glutamate Carboxypeptidase II - antagonists & inhibitors
Glutamate Carboxypeptidase II - blood
Humans
immunotherapy
Interleukin-2 - administration & dosage
Lymphocytes
Male
Middle Aged
Prostate cancer
Prostatic Neoplasms - blood
Prostatic Neoplasms - diagnosis
Prostatic Neoplasms - therapy
PSA delay
Receptors, Antigen, T-Cell - administration & dosage
T-Lymphocytes - transplantation
Transplantation, Autologous - methods
Treatment Outcome
Tumors
Title Phase I Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer: Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics as a Determinant of Clinical Response
URI https://api.istex.fr/ark:/67375/WNG-QNZJ02BM-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpros.23214
https://www.ncbi.nlm.nih.gov/pubmed/27324746
https://www.proquest.com/docview/1811591635
https://www.proquest.com/docview/1815700195
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ratRAFB5KBfGP90tqlRFFUMg2Ozu5iX_W1VoLu8Z0S4sgYW6py8ZENrug_vIRfBffyCfxnEk2pVIEhRCG5CQzyZzLx8yZbwh5FHPOhIw91zNs4PJAa1cKHrq57iPhWh4YheMd40mwd8j3j_3jDfJ8vRam4YfoBtzQMqy_RgMXst45JQ0FB1P3GO6zAw4Yk7UQEaUddxSOW9spBBZ6LnjqsOMmZTunj56JRhfwx345D2qeRa429OxeIR_WjW4yTua91VL21Lc_-Bz_96uuksstJqXDRomukQ1TXicXx-2s-w3yM_kIsY6-oVPUVlrldFguZ7--_0gOxkP60uaAmAUdDVO4NqUjUxQ1nZU0wRUlgGXpCFVr8YwmFVpgYWhawQngMrUDkri2ojxpyoVZzeFR1r2JJi25tv5aik8zVVMBB9TapfFgg1p604KmTc6vuUkOd19NR3tuu9mDq3gccZcLHgF4UX5f54JrZfpc6SCPI2VCrgOhmIR4LkWY61BLADK-9IzwtYK-jSQArVtks6xKc4dQnImNwHHFIM4DaUQYxD4LBtob6DhUzCFP1p2eqZYJHTfkKLKGw5ll2AuZ7QWHPOxkPzf8H-dKPba604mIxRwz5kI_O5q8zt5N3u977MU4O3LI9lq5stZZ1BmALACVAIx9hzzoboOZ49yNKE21sjK4E0E_BpnbjVJ2lQECZTzkgUOeWtX6S0OzJH17YEtb_yJ8l1wCoBg0SYzbZHO5WJl7AMaW8r41ut-9ADNF
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZgk4AvvL8UBhiBkEBKl7qOk_CtdIxurCVknTbxxXJsB6qGFPVFAj7xE_gv_CN-CXdOlmloQgIpiqLkEifx3fnR-fwcIU9izpnKYt_zLet6XBjjZYqHXm46SLiWC6sx3jEcicEB3z0KjurcHFwLU_FDNAE3tAznr9HAMSC9ecIaCh5m0WZYaOc8WceS3kidv5U27FEYuXaTCCz0PfDVYcNOyjZP7j01Hq3jr_1yFtg8jV3d4LN9paqwunCchZhzMm2vlllbf_uD0fG_v-squVzDUtqr9OgaOWfL6-TCsJ54v0F-Jh9huKM7dIwKS2c57ZXLya_vP5L9YY9uuTQQO6f9XgrnxrRvi2JBJyVNcFEJwFnaR-2av6DJDI2wsDSdwQ4QM3UxSVxeUX6ojgu7msKtrHkSTWp-bfO1VJ8mekEVbNBqk8mDL1QznBY0rdJ-7U1ysP1q3B94db0HT_M44h5XPAL8ooOOyRU32na4NiKPI21DboTSLIMhPVNhbkKTAZYJMt-qwGjo3CgDrHWLrJWz0t4hFCdjI_BdMYhzkVkVijhgomv8rolDzVrk2XGvS12ToWNNjkJWNM5MYi9I1wst8riR_VxRgJwp9dQpTyOi5lNMmgsDeTh6Ld-N3u_67OVQHrbIxrF2ydpfLCTgLMCVgI2DFnnUXAZLx-kbVdrZyslgMYJODDK3K61sGgMQynjIRYs8d7r1lxeVSfp23x3d_Rfhh-TiYDzck3s7ozf3yCXAjaLKadwga8v5yt4HbLbMHjgL_A3GQTdh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJk3c8M8IDDACIYGULnUdJ0HclJayDVpC1mkTErIc24GqIZn6IwFXPALvwhvxJBw7aaahCQmkKLKSk9iJzzn-ZB9_B6FHEaVEpJHnepp0XMqUclNBAzdTbUO4ljEtzXzHcMR2D-n-sX-8hp6v9sJU_BDNhJuxDOuvjYGfqGznlDQUHMy8RUyenQtogzIvMokb-klDHmUmru0aAgk8F1x10JCTkp3TZ88MRxvmz345D2ueha527BlcRh9Wra5CTqat5SJtyW9_EDr-72ddQZdqUIq7lRZdRWu6uIY2h_Wy-3X0M_4Egx3ew2OjrrjMcLdYTH59_xEfDLu4b4NA9Az3uglcG-OezvM5nhQ4NltKAMzintGt2TMcl8YEc42TEk6Al7GdkTSbK4qPVTnXyyk8Spo34bhm11ZfC_F5IudYwAG1NnE8pkE1v2mOkyroV99Ah4OX496uW2d7cCWNQupSQUNAL9Jvq0xQJXWbSsWyKJQ6oIoJSVIY0FMRZCpQKSAZP_W08JWEvg1TQFo30XpRFvoWwmYpNgTPFYE4ZakWAYt8wjrK66gokMRBT1adzmVNhW4ycuS8InEm3PQCt73goIeN7ElFAHKu1GOrO42ImE1NyFzg86PRK_5u9H7fIy-G_MhB2yvl4rW3mHNAWYAqARn7DnrQ3AY7N4s3otDl0sqYVATtCGS2KqVsKgMISmhAmYOeWtX6S0N5nLw9sKXb_yJ8H23G_QF_szd6fQddBNDIqoDGbbS-mC31XQBmi_Setb_fAS02EA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+I+Trial+of+Anti-PSMA+Designer+CAR-T+Cells+in+Prostate+Cancer%3A+Possible+Role+for+Interacting+Interleukin+2-T+Cell+Pharmacodynamics+as+a+Determinant+of+Clinical+Response&rft.jtitle=The+Prostate&rft.au=Junghans%2C+Richard+P&rft.au=Ma%2C+Qiangzhong&rft.au=Rathore%2C+Ritesh&rft.au=Gomes%2C+Erica+M&rft.date=2016-10-01&rft.issn=0270-4137&rft.eissn=1097-0045&rft.volume=76&rft.issue=14&rft.spage=1257&rft.epage=1270&rft_id=info:doi/10.1002%2Fpros.23214&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-4137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-4137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-4137&client=summon