A Deep Learning Approach for Mental Fatigue State Assessment
This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networ...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 2; p. 555 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts. |
---|---|
AbstractList | This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts. This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts.This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts. |
Audience | Academic |
Author | Zhou, Zhize Sun, Gang Dong, Lin Fan, Jiaxing |
AuthorAffiliation | 1 Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China; 21008001049@cupes.edu.cn (J.F.); donglin@cupes.edu.cn (L.D.); sungang@cupes.edu.cn (G.S.) 2 Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES), Beijing 100191, China |
AuthorAffiliation_xml | – name: 2 Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES), Beijing 100191, China – name: 1 Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China; 21008001049@cupes.edu.cn (J.F.); donglin@cupes.edu.cn (L.D.); sungang@cupes.edu.cn (G.S.) |
Author_xml | – sequence: 1 givenname: Jiaxing orcidid: 0009-0006-2825-7504 surname: Fan fullname: Fan, Jiaxing – sequence: 2 givenname: Lin surname: Dong fullname: Dong, Lin – sequence: 3 givenname: Gang surname: Sun fullname: Sun, Gang – sequence: 4 givenname: Zhize orcidid: 0000-0001-9576-1686 surname: Zhou fullname: Zhou, Zhize |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39860925$$D View this record in MEDLINE/PubMed |
BookMark | eNptksFu1DAQhi1URNuFAy-AInGBwxbbEye2hISilkKlRRyAs-U44zSrJA52gsTb19stSxchS7bl-eYf__ack5PRj0jIS0YvABR9F7mgnAohnpAzlvN8LTmnJ4_2p-Q8xi2lHADkM3IKShZUcXFG3lfZFeKUbdCEsRvbrJqm4I29zZwP2RccZ9Nn12bu2gWzb7OZMatixBiHFHpOnjrTR3zxsK7Ij-uP3y8_rzdfP91cVpu1zVU5rx3LqaAGqeSlbGgBtQSWI68tr7EQ3NWA0GADtCiYQkWVxDqFgTbgmClgRW72uo03Wz2FbjDht_am0_cHPrTahLmzPeqUpoBZ1rjG5NyVUrECQVImWZqYTVof9lrTUg_Y2GQjmP5I9Dgydre69b80Y2WhmISk8OZBIfifC8ZZD1202PdmRL9EDUwoSbkodhd__Q-69UsY01vdU8ltydlfqjXJQTc6nwrbnaiuJPCiBJHqrsjFf6g0Ghw6mxrCden8KOHVY6cHi38-PwFv94ANPsaA7oAwqneNpQ-NBXckRbqt |
Cites_doi | 10.1080/00223980.2019.1611530 10.1016/j.npbr.2012.07.002 10.1016/j.physbeh.2017.09.004 10.1109/BHI50953.2021.9508527 10.1016/j.autcon.2019.102851 10.1109/EMBC.2018.8512761 10.1016/j.neuropsychologia.2020.107686 10.1109/TITS.2022.3189346 10.1109/TBME.2021.3135622 10.1016/j.ijpsycho.2018.01.001 10.3389/fpsyg.2020.627828 10.3390/brainsci9120348 10.1109/ACCESS.2019.2909035 10.1038/s41591-018-0268-3 10.1111/j.1467-9280.2009.02342.x 10.1007/s13369-021-06206-1 10.3389/fnhum.2022.958768 10.1109/TIM.2017.2769198 10.1038/s41467-020-15432-4 10.1111/psyp.14126 10.3389/fneur.2018.00915 10.3390/app13053036 10.1109/ACCESS.2019.2928017 10.1109/JSEN.2021.3058658 10.1177/0363546517693846 10.1016/j.jocn.2022.02.015 10.1152/japplphysiol.00090.2019 10.3390/bios12060427 10.1080/1463922X.2021.1965670 10.18280/ts.380501 10.3390/math10183395 10.1001/archinte.1982.00340190148022 10.1016/j.eswa.2016.01.031 10.3390/ijerph191710973 10.1049/iet-spr.2010.0138 10.1007/s00421-014-2838-5 10.1123/pes.2017-0128 10.1007/s40279-018-0908-2 10.1123/jsep.2013-0249 10.3390/s20205738 10.1186/1744-9081-7-46 10.1016/j.compbiomed.2018.12.012 10.3348/kjr.2017.18.4.570 10.3390/app13127046 10.1016/j.aap.2011.11.019 10.3389/fphys.2018.00227 10.1037/0096-3445.136.4.593 10.3390/ijerph19010419 10.1007/s40279-016-0672-0 10.1007/s40279-018-0946-9 10.1016/j.medengphy.2019.07.009 10.1016/j.ins.2018.06.062 10.1016/j.eng.2018.11.025 10.11648/j.ijpbs.20170206.12 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25020555 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e2b931c1dfda42f78916e3801818011c PMC11769183 A832673518 39860925 10_3390_s25020555 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Science and Technology School-strengthen Project of CUPES, Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES) grantid: 1552230XX – fundername: Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES); Science and Technology School-strengthen Project of CUPES grantid: 1552230XX |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c497t-f14050ae08278d063b8314e2bc2be652fb3e3ded306619e9098ebe2b30d3f1a63 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:22:19 EDT 2025 Thu Aug 21 18:40:45 EDT 2025 Fri Jul 11 06:54:47 EDT 2025 Fri Jul 25 22:24:55 EDT 2025 Tue Jun 17 21:58:07 EDT 2025 Tue Jun 10 21:01:05 EDT 2025 Tue May 06 01:31:52 EDT 2025 Tue Jul 01 02:10:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ECG electrocardiogram mental fatigue deep neural network |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-f14050ae08278d063b8314e2bc2be652fb3e3ded306619e9098ebe2b30d3f1a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-9576-1686 0009-0006-2825-7504 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25020555 |
PMID | 39860925 |
PQID | 3159619721 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2b931c1dfda42f78916e3801818011c pubmedcentral_primary_oai_pubmedcentral_nih_gov_11769183 proquest_miscellaneous_3159802566 proquest_journals_3159619721 gale_infotracmisc_A832673518 gale_infotracacademiconefile_A832673518 pubmed_primary_39860925 crossref_primary_10_3390_s25020555 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lee (ref_50) 2017; 18 Wang (ref_29) 2021; 21 ref_13 ref_57 ref_56 ref_52 Penna (ref_12) 2018; 30 Goodman (ref_26) 2021; 150 Smith (ref_5) 2018; 48 Burch (ref_9) 2022; 23 ref_17 Yang (ref_38) 2019; 7 MacMahon (ref_14) 2014; 36 Marcora (ref_4) 2017; 47 Liu (ref_59) 2016; 53 Rashid (ref_53) 2021; 38 ref_25 Wang (ref_47) 2019; 501 ref_21 Koch (ref_22) 2009; 20 Huang (ref_30) 2019; 7 Martin (ref_2) 2018; 48 Azevedo (ref_32) 2019; 127 Zhang (ref_6) 2022; 23 Malik (ref_42) 2021; 69 Noyes (ref_1) 2017; 45 Pageaux (ref_15) 2014; 114 Jostmann (ref_23) 2007; 136 Kamath (ref_31) 2011; 5 ref_27 Hannun (ref_41) 2019; 25 Ebrahimi (ref_51) 2020; 7 Ghadirivasfi (ref_20) 2022; 98 ref_36 Batista (ref_28) 2021; 61 ref_35 Shigihara (ref_24) 2013; 19 ref_33 Smith (ref_55) 2019; 153 Caldwell (ref_54) 2018; 131 Oh (ref_44) 2019; 105 Dallaway (ref_18) 2022; 59 Tun (ref_58) 2017; 2 Tanaka (ref_11) 2011; 7 Manning (ref_19) 1982; 142 Taji (ref_45) 2017; 67 Qi (ref_8) 2019; 5 ref_46 Han (ref_48) 2018; 35 Winter (ref_10) 2016; 57 Chiarelli (ref_34) 2019; 73 Djaoui (ref_3) 2017; 181 ref_40 Ribeiro (ref_43) 2020; 11 Zhao (ref_39) 2012; 45 ref_49 Chitti (ref_16) 2023; 48 Li (ref_37) 2019; 106 ref_7 |
References_xml | – volume: 153 start-page: 759 year: 2019 ident: ref_55 article-title: Comparing the effects of three cognitive tasks on indicators of mental fatigue publication-title: J. Psychol. doi: 10.1080/00223980.2019.1611530 – volume: 19 start-page: 5 year: 2013 ident: ref_24 article-title: Two different types of mental fatigue produce different styles of task performance publication-title: Neurol. Psychiatry Brain Res. doi: 10.1016/j.npbr.2012.07.002 – volume: 35 start-page: 443 year: 2018 ident: ref_48 article-title: Recognition of fatigue status of pilots based on deep contractive auto-encoding network publication-title: J. Biomed. Eng. – volume: 181 start-page: 86 year: 2017 ident: ref_3 article-title: Monitoring training load and fatigue in soccer players with physiological markers publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2017.09.004 – ident: ref_52 doi: 10.1109/BHI50953.2021.9508527 – volume: 106 start-page: 102851 year: 2019 ident: ref_37 article-title: Pre-service fatigue screening for construction workers through wearable EEG-based signal spectral analysis publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102851 – ident: ref_46 doi: 10.1109/EMBC.2018.8512761 – volume: 150 start-page: 107686 year: 2021 ident: ref_26 article-title: Thirst perception exacerbates objective mental fatigue publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2020.107686 – volume: 23 start-page: 19999 year: 2022 ident: ref_6 article-title: A systematic survey of driving fatigue monitoring publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3189346 – volume: 69 start-page: 1788 year: 2021 ident: ref_42 article-title: Real-time patient-specific ECG classification by 1D self-operational neural networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3135622 – volume: 131 start-page: 96 year: 2018 ident: ref_54 article-title: Adding HRV biofeedback to psychotherapy increases heart rate variability and improves the treatment of major depressive disorder publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2018.01.001 – ident: ref_7 doi: 10.3389/fpsyg.2020.627828 – ident: ref_49 doi: 10.3390/brainsci9120348 – volume: 7 start-page: 46389 year: 2019 ident: ref_38 article-title: Feature extraction and simulation of EEG signals during exercise-induced fatigue publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909035 – volume: 25 start-page: 65 year: 2019 ident: ref_41 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – volume: 20 start-page: 549 year: 2009 ident: ref_22 article-title: Body locomotion as regulatory process: Stepping backward enhances cognitive control publication-title: Psychol. Sci. doi: 10.1111/j.1467-9280.2009.02342.x – volume: 48 start-page: 11135 year: 2023 ident: ref_16 article-title: EEG signal feature selection algorithm and support vector machine model in patient’s fatigue recognition publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-06206-1 – volume: 7 start-page: 100033 year: 2020 ident: ref_51 article-title: A review on deep learning methods for ECG arrhythmia classification publication-title: Expert Syst. Appl. X – ident: ref_33 doi: 10.3389/fnhum.2022.958768 – volume: 67 start-page: 1124 year: 2017 ident: ref_45 article-title: False alarm reduction in atrial fibrillation detection using deep belief networks publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2769198 – volume: 11 start-page: 1760 year: 2020 ident: ref_43 article-title: Automatic diagnosis of the 12-lead ECG using a deep neural network publication-title: Nat. Commun. doi: 10.1038/s41467-020-15432-4 – volume: 59 start-page: e14126 year: 2022 ident: ref_18 article-title: Cognitive tasks elicit mental fatigue and impair subsequent physical task endurance: Effects of task duration and type publication-title: Psychophysiology doi: 10.1111/psyp.14126 – ident: ref_17 doi: 10.3389/fneur.2018.00915 – ident: ref_57 doi: 10.3390/app13053036 – volume: 7 start-page: 92871 year: 2019 ident: ref_30 article-title: ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928017 – volume: 21 start-page: 10811 year: 2021 ident: ref_29 article-title: EEG driving fatigue detection with PDC-based brain functional network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3058658 – volume: 45 start-page: 3388 year: 2017 ident: ref_1 article-title: Effect of fatigue protocols on lower limb neuromuscular function and implications for anterior cruciate ligament injury prevention training: A systematic review publication-title: Am. J. Sports Med. doi: 10.1177/0363546517693846 – volume: 98 start-page: 229 year: 2022 ident: ref_20 article-title: Psychopathological and neuropsychological outcomes of deep brain stimulation for severe-treatment-resistant obsessive-compulsive disorder: An open-label case series publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2022.02.015 – volume: 127 start-page: 838 year: 2019 ident: ref_32 article-title: Characterization of performance fatigability during a self-paced exercise publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00090.2019 – ident: ref_40 doi: 10.3390/bios12060427 – volume: 23 start-page: 374 year: 2022 ident: ref_9 article-title: The use of wearable devices in cognitive fatigue: Current trends and future intentions publication-title: Theor. Issues Ergon. Sci. doi: 10.1080/1463922X.2021.1965670 – volume: 38 start-page: 1259 year: 2021 ident: ref_53 article-title: Random subspace K-NN based ensemble classifier for driver fatigue detection utilizing selected EEG channels publication-title: Trait. Signal doi: 10.18280/ts.380501 – ident: ref_21 doi: 10.3390/math10183395 – volume: 142 start-page: 1192 year: 1982 ident: ref_19 article-title: The serial sevens test publication-title: Arch. Intern. Med. doi: 10.1001/archinte.1982.00340190148022 – volume: 53 start-page: 129 year: 2016 ident: ref_59 article-title: Dictionary learning for VQ feature extraction in ECG beats classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.01.031 – ident: ref_25 doi: 10.3390/ijerph191710973 – volume: 5 start-page: 575 year: 2011 ident: ref_31 article-title: ECG beat classification using features extracted from Teager energy functions in time and frequency domains publication-title: IET Signal Process. doi: 10.1049/iet-spr.2010.0138 – volume: 114 start-page: 1095 year: 2014 ident: ref_15 article-title: Response inhibition impairs subsequent self-paced endurance performance publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-014-2838-5 – volume: 30 start-page: 208 year: 2018 ident: ref_12 article-title: Mental fatigue impairs physical performance in young swimmers publication-title: Pediatr. Exerc. Sci. doi: 10.1123/pes.2017-0128 – volume: 48 start-page: 1525 year: 2018 ident: ref_5 article-title: Mental fatigue and soccer: Current knowledge and future directions publication-title: Sports Med. doi: 10.1007/s40279-018-0908-2 – volume: 36 start-page: 375 year: 2014 ident: ref_14 article-title: Cognitive fatigue effects on physical performance during running publication-title: J. Sport Exerc. Psychol. doi: 10.1123/jsep.2013-0249 – ident: ref_35 doi: 10.3390/s20205738 – volume: 7 start-page: 46 year: 2011 ident: ref_11 article-title: Autonomic nervous alterations associated with daily level of fatigue publication-title: Behav. Brain Funct. doi: 10.1186/1744-9081-7-46 – volume: 105 start-page: 92 year: 2019 ident: ref_44 article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.12.012 – volume: 18 start-page: 570 year: 2017 ident: ref_50 article-title: Deep learning in medical imaging: General overview publication-title: Korean J. Radiol. doi: 10.3348/kjr.2017.18.4.570 – ident: ref_27 doi: 10.3390/app13127046 – volume: 45 start-page: 83 year: 2012 ident: ref_39 article-title: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.11.019 – ident: ref_13 doi: 10.3389/fphys.2018.00227 – volume: 61 start-page: 673 year: 2021 ident: ref_28 article-title: Effect of mental fatigue on performance, perceptual and physiological responses in orienteering athletes publication-title: J. Sports Med. Phys. Fit. – volume: 136 start-page: 593 year: 2007 ident: ref_23 article-title: On the regulation of cognitive control: Action orientation moderates the impact of high demands in stroop interference tasks publication-title: J. Exp. Psychol. Gen. doi: 10.1037/0096-3445.136.4.593 – ident: ref_56 doi: 10.3390/ijerph19010419 – volume: 47 start-page: 1569 year: 2017 ident: ref_4 article-title: The effects of mental fatigue on physical performance: A systematic review publication-title: Sports Med. doi: 10.1007/s40279-016-0672-0 – volume: 48 start-page: 2041 year: 2018 ident: ref_2 article-title: Mental fatigue impairs endurance performance: A physiological explanation publication-title: Sports Med. doi: 10.1007/s40279-018-0946-9 – volume: 57 start-page: 887 year: 2016 ident: ref_10 article-title: Effects of fatigue on kinematics and kinetics during overground running: A systematic review publication-title: J. Sports Med. Phys. Fit. – volume: 73 start-page: 39 year: 2019 ident: ref_34 article-title: Data-driven assessment of cardiovascular ageing through multisite photoplethysmography and electrocardiography publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2019.07.009 – volume: 501 start-page: 523 year: 2019 ident: ref_47 article-title: A global and updatable ECG beat classification system based on recurrent neural networks and active learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.06.062 – volume: 5 start-page: 276 year: 2019 ident: ref_8 article-title: Neural mechanisms of mental fatigue revisited: New insights from the brain connectome publication-title: Engineering doi: 10.1016/j.eng.2018.11.025 – ident: ref_36 – volume: 2 start-page: 127 year: 2017 ident: ref_58 article-title: Analysis on ECG data compression using wavelet transform technique publication-title: Int. J. Psychol. Brain Sci. doi: 10.11648/j.ijpbs.20170206.12 |
SSID | ssj0023338 |
Score | 2.4367092 |
Snippet | This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 555 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Cardiovascular disease Classification Deep Learning deep neural network ECG Efficiency Electrocardiogram Electrocardiography Exercise intensity Fatigue Fourier transforms Heart Heart beat Heart Rate - physiology Humans Injuries Kinematics mental fatigue Mental Fatigue - diagnosis Mental Fatigue - physiopathology Nervous system Neural networks Neural Networks, Computer Physiological aspects Physiology Questionnaires Signal Processing, Computer-Assisted Support Vector Machine Time series Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ja9wwFH6UnNJDydLFzYJSCj2ZWIslGXJxliHkkFMDuQlLfkp7cUJm5v_3yfaYMT3kkovBlgzS90lvMc-fAH4WKpQ8RpOjsDFXaELeKAy5UTHKQoSyCX2V772-fVB3j-Xj1lFfqSZskAcegDtH4SvJA29j2ygRjaV4BqVNOlN04SFZX_J5m2RqTLUkZV6DjpCkpP58SY5eJGmrmffpRfr_N8VbvmheJ7nleBZ78GmMGFk9jHQfPmB3AB-3dAQP4aJm14gvbBRLfWL1qBTOKCRlg0wPWxAHT2tkfXjJ6kmR8zM8LG5-X93m47EIeVCVWeWRcqKyaJCct7EthRjeSq4IpyA86lJEL1G22FIyQNkRVkVliSnhZdHKyBstv8BO99zhN2CSR6tDI3TpvWq5aDyZbh7oxlTCxDKDHxu43MugfuEoa0iYugnTDC4TkFOHJFjdPyAa3Uije4vGDH4lGlzaVoR1aMa_A2icSaDK1WR5tJEltxkcz3rSdgjz5g2RbtyOSycpaNPpgDWewdnUnN5MJWYdPq-HPjZFgDqDrwPv05RkZXVRCZqqna2I2ZznLd3fP71YN-dGV2Q3v78HSkewK9L5w_0noGPYWb2u8YSCopU_7df_PzIOCGE priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABUZ6BFhmExClq_IjtSEgoLawqDpyotDcrceyFS3bb3f3_zCTedCMkLpESO4o943nZk28APhXKlzxGkwdhY66C8Xmjgs-NilEWwpeNH7J8f-rrG_VjWS7Thts2pVUedOKgqLu1pz3yC4l2V1ONLP51c5tT1Sg6XU0lNB7CI4Iuo5Qus7wPuCTGXyOakMTQ_mKL5l4QwNXMBg1Q_f8q5COLNM-WPDI_i2fwNPmNrB4ZfQoPQv8cnhyhCb6ALzX7FsKGJcjUFasTXjhDx5SNYD1sgZxY7QMbnExWT7icL-Fm8f3X1XWeiiPkXlVml0eMjMqiCWjCje3Q0Wit5CqI1os26FLEVgbZhQ5DAiRbqIrKIr9EK4tORt5o-QpO-nUf3gCTPFrtG6HLtlUdF02LCpx7vDGVMLHM4OOBXG4zYmA4jB2Ipm6iaQaXRMipA8FWDw_WdyuXpMDh9yvJPe9i1ygRjUXnNEhLoGF44T6Dz8QGR8KFtPZN-kcAx0kwVa5G_aONLLnN4GzWE4XCz5sPjHRJKLfufgll8GFqpjcp0awP6_3Yx5IfqDN4PfJ9mpKsrC4qgVO1sxUxm_O8pf_ze4Ds5tzoCrXn2_-P6x08FlRfeNjiOYOT3d0-nKPTs2vfDyv7L0TxAJ4 priority: 102 providerName: ProQuest |
Title | A Deep Learning Approach for Mental Fatigue State Assessment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39860925 https://www.proquest.com/docview/3159619721 https://www.proquest.com/docview/3159802566 https://pubmed.ncbi.nlm.nih.gov/PMC11769183 https://doaj.org/article/e2b931c1dfda42f78916e3801818011c |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_u40UfxPPrqndLFMGnavPRJIUT6emth-Ah4sK-hSZNVkG6594u6H9_k7ZbtuiDL4U2Ce3MZL7S5DcALzPhchqCSj3TIRVeubQS3qVKhMAz5vLKtbt8r-TlTHya5_M92NbY7Bl488_ULtaTmq1-vv796887VPi3MePElP3NDbpxFoGr9uEQHZKK-vlZDD8TGOdtQet4pitFf5h1AEPjoSO31KL3_22jd5zUeAPljkea3od7fShJyk72R7Dnmwdwdwdg8CGcleSD99ekR1FdkLKHECcYq5IOv4dMUTiLjSdt3EnKAarzEcymF9_eX6Z9vYTUiUKt04DJUp5VHr260jXGHlZzKjyzjlkvcxYs97z2NWYJmDb5Iis0ipBZntU80Eryx3DQLBt_DITToKWrmMytFTVllUWbTh3eqIKpkCfwYssuc93BYhhMJyJPzcDTBM4jI4cOEcm6fbBcLUyvGAbfX3DqaB3qSrCgNMarnuuII4YX6hJ4FcVg4gxAXruqPzaA3xmRq0yJJkkqnlOdwMmoJ-qJGzdvBWm208xwjOZkrLxGE3g-NMeRce9Z45ebro-OoaFM4Ekn94EkXmiZFQxJ1aMZMaJ53NL8-N6ieFOqZIEG9el_E_gM7rBYfbhdADqBg_Vq408xJFrbCeyrucKrnn6cwOH5xdWXr5N2eWHSqsItQcYMTg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a4wAcEN8EBhgE4hQtthPbkUAoMKqOjZ02qTcTO3bZJe3WVoh_ir-R53ytERK3XSqldpv4ff3eS5zfA3ibpDaj3svYMeXj1Ekbl6mzsUy95wmzWWmbXb4nYnqWfptlsx34078LE7ZV9jGxCdTVwoZ75PsccVeEHln00_IiDl2jwtPVvoVGaxZH7vcvLNlWHw8PUL_vGJt8Pf0yjbuuArFNc7mOPZYUWVI6xD6pKkRoozhNHTOWGScy5g13vHIV5tJ4PpcnucKFMsOTintaCo7_ewNuIvAmwaPk7KrA41jvtexFnOfJ_grTCxYItUaY17QG-BcAthBwvDtzC-4m9-Bul6eSojWs-7Dj6gdwZ4u98CF8KMiBc0vSUbTOSdHxkxNMhElLDkQmqPn5xpEmqSXFwAP6CM6uRWyPYbde1O4pEE69ErZkIjMmrSgrDQIGtXggcyZ9FsGbXlx62XJuaKxVgkz1INMIPgdBDhMCTXbzxeJyrjuv03j-nFNLK1-VKfNSYTLsuAokZfhBbQTvgxp0cGaUtS27dxLwOgMtli4w3gnJM6oi2BvNRCe04-FekboLAit9ZbIRvB6Gwy_DxrbaLTbtHBXyThHBk1bvw5J4rkSSM1yqGlnEaM3jkfr8Z0MRTqkUOUbrZ_-_rldwa3r6_VgfH54cPYfbLPQ2bm4v7cHu-nLjXmDCtTYvGysn8OO63eovKQ49Iw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgE4hRtbCd-SCAUWFYtRRUHKu3NJI699JLddneF-Gv8OsZ5dSMkbr1ESuw8PO9JJt8AvE5Sm1HvZeyY8nHqpI2L1NlYpt7zhNmssE2V74k4PE2_zLP5Hvzp_4UJZZW9TWwMdbW04R35hKPfFaFHFp34rizi23T2YXUehw5S4Utr306jFZFj9_sXpm_r90dT5PUbxmafv386jLsOA7FNtdzEHtOLLCkc-kGpKvTWpeI0day0rHQiY77kjleuwrga7-10ohUumpU8qbinheB43WtwXfKMBh2T88tkj2Pu1yIZca6TyRpDDRbAtUb-r2kT8K8z2PGG40rNHdc3uwO3u5iV5K2Q3YU9V9-DWztIhvfhXU6mzq1IB9e6IHmHVU4wKCYtUBCZoRQsto40AS7JB0zQB3B6JWR7CPv1snaPgXDqlbAFE1lZphVlRYnOg1rckZpJn0XwqieXWbX4GwbzlkBTM9A0go-BkMOEAJndHFheLEyngQbvrzm1tPJVkTIvFQbGjqsAWIYbaiN4G9hggmIjrW3R_Z-AzxkgskyOtk8ETqsIDkYzUSHteLhnpOkMwtpcim8EL4fhcGYocqvdctvOUSEGFRE8avk-LIlrJRLNcKlqJBGjNY9H6rOfDVw4pVJotNxP_v9cL-AGKpT5enRy_BRustDmuHnTdAD7m4ute4ax16Z83gg5gR9XrVV_AeWaQVk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Mental+Fatigue+State+Assessment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Fan%2C+Jiaxing&rft.au=Dong%2C+Lin&rft.au=Sun%2C+Gang&rft.au=Zhou%2C+Zhize&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft_id=info:doi/10.3390%2Fs25020555&rft.externalDocID=A832673518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |