A Deep Learning Approach for Mental Fatigue State Assessment

This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networ...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 2; p. 555
Main Authors Fan, Jiaxing, Dong, Lin, Sun, Gang, Zhou, Zhize
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts.
AbstractList This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts.
This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts.This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts.
Audience Academic
Author Zhou, Zhize
Sun, Gang
Dong, Lin
Fan, Jiaxing
AuthorAffiliation 1 Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China; 21008001049@cupes.edu.cn (J.F.); donglin@cupes.edu.cn (L.D.); sungang@cupes.edu.cn (G.S.)
2 Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES), Beijing 100191, China
AuthorAffiliation_xml – name: 2 Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES), Beijing 100191, China
– name: 1 Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China; 21008001049@cupes.edu.cn (J.F.); donglin@cupes.edu.cn (L.D.); sungang@cupes.edu.cn (G.S.)
Author_xml – sequence: 1
  givenname: Jiaxing
  orcidid: 0009-0006-2825-7504
  surname: Fan
  fullname: Fan, Jiaxing
– sequence: 2
  givenname: Lin
  surname: Dong
  fullname: Dong, Lin
– sequence: 3
  givenname: Gang
  surname: Sun
  fullname: Sun, Gang
– sequence: 4
  givenname: Zhize
  orcidid: 0000-0001-9576-1686
  surname: Zhou
  fullname: Zhou, Zhize
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39860925$$D View this record in MEDLINE/PubMed
BookMark eNptksFu1DAQhi1URNuFAy-AInGBwxbbEye2hISilkKlRRyAs-U44zSrJA52gsTb19stSxchS7bl-eYf__ack5PRj0jIS0YvABR9F7mgnAohnpAzlvN8LTmnJ4_2p-Q8xi2lHADkM3IKShZUcXFG3lfZFeKUbdCEsRvbrJqm4I29zZwP2RccZ9Nn12bu2gWzb7OZMatixBiHFHpOnjrTR3zxsK7Ij-uP3y8_rzdfP91cVpu1zVU5rx3LqaAGqeSlbGgBtQSWI68tr7EQ3NWA0GADtCiYQkWVxDqFgTbgmClgRW72uo03Wz2FbjDht_am0_cHPrTahLmzPeqUpoBZ1rjG5NyVUrECQVImWZqYTVof9lrTUg_Y2GQjmP5I9Dgydre69b80Y2WhmISk8OZBIfifC8ZZD1202PdmRL9EDUwoSbkodhd__Q-69UsY01vdU8ltydlfqjXJQTc6nwrbnaiuJPCiBJHqrsjFf6g0Ghw6mxrCden8KOHVY6cHi38-PwFv94ANPsaA7oAwqneNpQ-NBXckRbqt
Cites_doi 10.1080/00223980.2019.1611530
10.1016/j.npbr.2012.07.002
10.1016/j.physbeh.2017.09.004
10.1109/BHI50953.2021.9508527
10.1016/j.autcon.2019.102851
10.1109/EMBC.2018.8512761
10.1016/j.neuropsychologia.2020.107686
10.1109/TITS.2022.3189346
10.1109/TBME.2021.3135622
10.1016/j.ijpsycho.2018.01.001
10.3389/fpsyg.2020.627828
10.3390/brainsci9120348
10.1109/ACCESS.2019.2909035
10.1038/s41591-018-0268-3
10.1111/j.1467-9280.2009.02342.x
10.1007/s13369-021-06206-1
10.3389/fnhum.2022.958768
10.1109/TIM.2017.2769198
10.1038/s41467-020-15432-4
10.1111/psyp.14126
10.3389/fneur.2018.00915
10.3390/app13053036
10.1109/ACCESS.2019.2928017
10.1109/JSEN.2021.3058658
10.1177/0363546517693846
10.1016/j.jocn.2022.02.015
10.1152/japplphysiol.00090.2019
10.3390/bios12060427
10.1080/1463922X.2021.1965670
10.18280/ts.380501
10.3390/math10183395
10.1001/archinte.1982.00340190148022
10.1016/j.eswa.2016.01.031
10.3390/ijerph191710973
10.1049/iet-spr.2010.0138
10.1007/s00421-014-2838-5
10.1123/pes.2017-0128
10.1007/s40279-018-0908-2
10.1123/jsep.2013-0249
10.3390/s20205738
10.1186/1744-9081-7-46
10.1016/j.compbiomed.2018.12.012
10.3348/kjr.2017.18.4.570
10.3390/app13127046
10.1016/j.aap.2011.11.019
10.3389/fphys.2018.00227
10.1037/0096-3445.136.4.593
10.3390/ijerph19010419
10.1007/s40279-016-0672-0
10.1007/s40279-018-0946-9
10.1016/j.medengphy.2019.07.009
10.1016/j.ins.2018.06.062
10.1016/j.eng.2018.11.025
10.11648/j.ijpbs.20170206.12
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25020555
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e2b931c1dfda42f78916e3801818011c
PMC11769183
A832673518
39860925
10_3390_s25020555
Genre Journal Article
GrantInformation_xml – fundername: Science and Technology School-strengthen Project of CUPES, Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES)
  grantid: 1552230XX
– fundername: Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES); Science and Technology School-strengthen Project of CUPES
  grantid: 1552230XX
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c497t-f14050ae08278d063b8314e2bc2be652fb3e3ded306619e9098ebe2b30d3f1a63
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:22:19 EDT 2025
Thu Aug 21 18:40:45 EDT 2025
Fri Jul 11 06:54:47 EDT 2025
Fri Jul 25 22:24:55 EDT 2025
Tue Jun 17 21:58:07 EDT 2025
Tue Jun 10 21:01:05 EDT 2025
Tue May 06 01:31:52 EDT 2025
Tue Jul 01 02:10:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ECG
electrocardiogram
mental fatigue
deep neural network
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-f14050ae08278d063b8314e2bc2be652fb3e3ded306619e9098ebe2b30d3f1a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-9576-1686
0009-0006-2825-7504
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25020555
PMID 39860925
PQID 3159619721
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e2b931c1dfda42f78916e3801818011c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11769183
proquest_miscellaneous_3159802566
proquest_journals_3159619721
gale_infotracmisc_A832673518
gale_infotracacademiconefile_A832673518
pubmed_primary_39860925
crossref_primary_10_3390_s25020555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lee (ref_50) 2017; 18
Wang (ref_29) 2021; 21
ref_13
ref_57
ref_56
ref_52
Penna (ref_12) 2018; 30
Goodman (ref_26) 2021; 150
Smith (ref_5) 2018; 48
Burch (ref_9) 2022; 23
ref_17
Yang (ref_38) 2019; 7
MacMahon (ref_14) 2014; 36
Marcora (ref_4) 2017; 47
Liu (ref_59) 2016; 53
Rashid (ref_53) 2021; 38
ref_25
Wang (ref_47) 2019; 501
ref_21
Koch (ref_22) 2009; 20
Huang (ref_30) 2019; 7
Martin (ref_2) 2018; 48
Azevedo (ref_32) 2019; 127
Zhang (ref_6) 2022; 23
Malik (ref_42) 2021; 69
Noyes (ref_1) 2017; 45
Pageaux (ref_15) 2014; 114
Jostmann (ref_23) 2007; 136
Kamath (ref_31) 2011; 5
ref_27
Hannun (ref_41) 2019; 25
Ebrahimi (ref_51) 2020; 7
Ghadirivasfi (ref_20) 2022; 98
ref_36
Batista (ref_28) 2021; 61
ref_35
Shigihara (ref_24) 2013; 19
ref_33
Smith (ref_55) 2019; 153
Caldwell (ref_54) 2018; 131
Oh (ref_44) 2019; 105
Dallaway (ref_18) 2022; 59
Tun (ref_58) 2017; 2
Tanaka (ref_11) 2011; 7
Manning (ref_19) 1982; 142
Taji (ref_45) 2017; 67
Qi (ref_8) 2019; 5
ref_46
Han (ref_48) 2018; 35
Winter (ref_10) 2016; 57
Chiarelli (ref_34) 2019; 73
Djaoui (ref_3) 2017; 181
ref_40
Ribeiro (ref_43) 2020; 11
Zhao (ref_39) 2012; 45
ref_49
Chitti (ref_16) 2023; 48
Li (ref_37) 2019; 106
ref_7
References_xml – volume: 153
  start-page: 759
  year: 2019
  ident: ref_55
  article-title: Comparing the effects of three cognitive tasks on indicators of mental fatigue
  publication-title: J. Psychol.
  doi: 10.1080/00223980.2019.1611530
– volume: 19
  start-page: 5
  year: 2013
  ident: ref_24
  article-title: Two different types of mental fatigue produce different styles of task performance
  publication-title: Neurol. Psychiatry Brain Res.
  doi: 10.1016/j.npbr.2012.07.002
– volume: 35
  start-page: 443
  year: 2018
  ident: ref_48
  article-title: Recognition of fatigue status of pilots based on deep contractive auto-encoding network
  publication-title: J. Biomed. Eng.
– volume: 181
  start-page: 86
  year: 2017
  ident: ref_3
  article-title: Monitoring training load and fatigue in soccer players with physiological markers
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2017.09.004
– ident: ref_52
  doi: 10.1109/BHI50953.2021.9508527
– volume: 106
  start-page: 102851
  year: 2019
  ident: ref_37
  article-title: Pre-service fatigue screening for construction workers through wearable EEG-based signal spectral analysis
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102851
– ident: ref_46
  doi: 10.1109/EMBC.2018.8512761
– volume: 150
  start-page: 107686
  year: 2021
  ident: ref_26
  article-title: Thirst perception exacerbates objective mental fatigue
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2020.107686
– volume: 23
  start-page: 19999
  year: 2022
  ident: ref_6
  article-title: A systematic survey of driving fatigue monitoring
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3189346
– volume: 69
  start-page: 1788
  year: 2021
  ident: ref_42
  article-title: Real-time patient-specific ECG classification by 1D self-operational neural networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3135622
– volume: 131
  start-page: 96
  year: 2018
  ident: ref_54
  article-title: Adding HRV biofeedback to psychotherapy increases heart rate variability and improves the treatment of major depressive disorder
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2018.01.001
– ident: ref_7
  doi: 10.3389/fpsyg.2020.627828
– ident: ref_49
  doi: 10.3390/brainsci9120348
– volume: 7
  start-page: 46389
  year: 2019
  ident: ref_38
  article-title: Feature extraction and simulation of EEG signals during exercise-induced fatigue
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909035
– volume: 25
  start-page: 65
  year: 2019
  ident: ref_41
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– volume: 20
  start-page: 549
  year: 2009
  ident: ref_22
  article-title: Body locomotion as regulatory process: Stepping backward enhances cognitive control
  publication-title: Psychol. Sci.
  doi: 10.1111/j.1467-9280.2009.02342.x
– volume: 48
  start-page: 11135
  year: 2023
  ident: ref_16
  article-title: EEG signal feature selection algorithm and support vector machine model in patient’s fatigue recognition
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-06206-1
– volume: 7
  start-page: 100033
  year: 2020
  ident: ref_51
  article-title: A review on deep learning methods for ECG arrhythmia classification
  publication-title: Expert Syst. Appl. X
– ident: ref_33
  doi: 10.3389/fnhum.2022.958768
– volume: 67
  start-page: 1124
  year: 2017
  ident: ref_45
  article-title: False alarm reduction in atrial fibrillation detection using deep belief networks
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2769198
– volume: 11
  start-page: 1760
  year: 2020
  ident: ref_43
  article-title: Automatic diagnosis of the 12-lead ECG using a deep neural network
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15432-4
– volume: 59
  start-page: e14126
  year: 2022
  ident: ref_18
  article-title: Cognitive tasks elicit mental fatigue and impair subsequent physical task endurance: Effects of task duration and type
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14126
– ident: ref_17
  doi: 10.3389/fneur.2018.00915
– ident: ref_57
  doi: 10.3390/app13053036
– volume: 7
  start-page: 92871
  year: 2019
  ident: ref_30
  article-title: ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928017
– volume: 21
  start-page: 10811
  year: 2021
  ident: ref_29
  article-title: EEG driving fatigue detection with PDC-based brain functional network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3058658
– volume: 45
  start-page: 3388
  year: 2017
  ident: ref_1
  article-title: Effect of fatigue protocols on lower limb neuromuscular function and implications for anterior cruciate ligament injury prevention training: A systematic review
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546517693846
– volume: 98
  start-page: 229
  year: 2022
  ident: ref_20
  article-title: Psychopathological and neuropsychological outcomes of deep brain stimulation for severe-treatment-resistant obsessive-compulsive disorder: An open-label case series
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2022.02.015
– volume: 127
  start-page: 838
  year: 2019
  ident: ref_32
  article-title: Characterization of performance fatigability during a self-paced exercise
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00090.2019
– ident: ref_40
  doi: 10.3390/bios12060427
– volume: 23
  start-page: 374
  year: 2022
  ident: ref_9
  article-title: The use of wearable devices in cognitive fatigue: Current trends and future intentions
  publication-title: Theor. Issues Ergon. Sci.
  doi: 10.1080/1463922X.2021.1965670
– volume: 38
  start-page: 1259
  year: 2021
  ident: ref_53
  article-title: Random subspace K-NN based ensemble classifier for driver fatigue detection utilizing selected EEG channels
  publication-title: Trait. Signal
  doi: 10.18280/ts.380501
– ident: ref_21
  doi: 10.3390/math10183395
– volume: 142
  start-page: 1192
  year: 1982
  ident: ref_19
  article-title: The serial sevens test
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinte.1982.00340190148022
– volume: 53
  start-page: 129
  year: 2016
  ident: ref_59
  article-title: Dictionary learning for VQ feature extraction in ECG beats classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.01.031
– ident: ref_25
  doi: 10.3390/ijerph191710973
– volume: 5
  start-page: 575
  year: 2011
  ident: ref_31
  article-title: ECG beat classification using features extracted from Teager energy functions in time and frequency domains
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2010.0138
– volume: 114
  start-page: 1095
  year: 2014
  ident: ref_15
  article-title: Response inhibition impairs subsequent self-paced endurance performance
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-014-2838-5
– volume: 30
  start-page: 208
  year: 2018
  ident: ref_12
  article-title: Mental fatigue impairs physical performance in young swimmers
  publication-title: Pediatr. Exerc. Sci.
  doi: 10.1123/pes.2017-0128
– volume: 48
  start-page: 1525
  year: 2018
  ident: ref_5
  article-title: Mental fatigue and soccer: Current knowledge and future directions
  publication-title: Sports Med.
  doi: 10.1007/s40279-018-0908-2
– volume: 36
  start-page: 375
  year: 2014
  ident: ref_14
  article-title: Cognitive fatigue effects on physical performance during running
  publication-title: J. Sport Exerc. Psychol.
  doi: 10.1123/jsep.2013-0249
– ident: ref_35
  doi: 10.3390/s20205738
– volume: 7
  start-page: 46
  year: 2011
  ident: ref_11
  article-title: Autonomic nervous alterations associated with daily level of fatigue
  publication-title: Behav. Brain Funct.
  doi: 10.1186/1744-9081-7-46
– volume: 105
  start-page: 92
  year: 2019
  ident: ref_44
  article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.12.012
– volume: 18
  start-page: 570
  year: 2017
  ident: ref_50
  article-title: Deep learning in medical imaging: General overview
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2017.18.4.570
– ident: ref_27
  doi: 10.3390/app13127046
– volume: 45
  start-page: 83
  year: 2012
  ident: ref_39
  article-title: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2011.11.019
– ident: ref_13
  doi: 10.3389/fphys.2018.00227
– volume: 61
  start-page: 673
  year: 2021
  ident: ref_28
  article-title: Effect of mental fatigue on performance, perceptual and physiological responses in orienteering athletes
  publication-title: J. Sports Med. Phys. Fit.
– volume: 136
  start-page: 593
  year: 2007
  ident: ref_23
  article-title: On the regulation of cognitive control: Action orientation moderates the impact of high demands in stroop interference tasks
  publication-title: J. Exp. Psychol. Gen.
  doi: 10.1037/0096-3445.136.4.593
– ident: ref_56
  doi: 10.3390/ijerph19010419
– volume: 47
  start-page: 1569
  year: 2017
  ident: ref_4
  article-title: The effects of mental fatigue on physical performance: A systematic review
  publication-title: Sports Med.
  doi: 10.1007/s40279-016-0672-0
– volume: 48
  start-page: 2041
  year: 2018
  ident: ref_2
  article-title: Mental fatigue impairs endurance performance: A physiological explanation
  publication-title: Sports Med.
  doi: 10.1007/s40279-018-0946-9
– volume: 57
  start-page: 887
  year: 2016
  ident: ref_10
  article-title: Effects of fatigue on kinematics and kinetics during overground running: A systematic review
  publication-title: J. Sports Med. Phys. Fit.
– volume: 73
  start-page: 39
  year: 2019
  ident: ref_34
  article-title: Data-driven assessment of cardiovascular ageing through multisite photoplethysmography and electrocardiography
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2019.07.009
– volume: 501
  start-page: 523
  year: 2019
  ident: ref_47
  article-title: A global and updatable ECG beat classification system based on recurrent neural networks and active learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.06.062
– volume: 5
  start-page: 276
  year: 2019
  ident: ref_8
  article-title: Neural mechanisms of mental fatigue revisited: New insights from the brain connectome
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.11.025
– ident: ref_36
– volume: 2
  start-page: 127
  year: 2017
  ident: ref_58
  article-title: Analysis on ECG data compression using wavelet transform technique
  publication-title: Int. J. Psychol. Brain Sci.
  doi: 10.11648/j.ijpbs.20170206.12
SSID ssj0023338
Score 2.4367092
Snippet This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 555
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Cardiovascular disease
Classification
Deep Learning
deep neural network
ECG
Efficiency
Electrocardiogram
Electrocardiography
Exercise intensity
Fatigue
Fourier transforms
Heart
Heart beat
Heart Rate - physiology
Humans
Injuries
Kinematics
mental fatigue
Mental Fatigue - diagnosis
Mental Fatigue - physiopathology
Nervous system
Neural networks
Neural Networks, Computer
Physiological aspects
Physiology
Questionnaires
Signal Processing, Computer-Assisted
Support Vector Machine
Time series
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ja9wwFH6UnNJDydLFzYJSCj2ZWIslGXJxliHkkFMDuQlLfkp7cUJm5v_3yfaYMT3kkovBlgzS90lvMc-fAH4WKpQ8RpOjsDFXaELeKAy5UTHKQoSyCX2V772-fVB3j-Xj1lFfqSZskAcegDtH4SvJA29j2ygRjaV4BqVNOlN04SFZX_J5m2RqTLUkZV6DjpCkpP58SY5eJGmrmffpRfr_N8VbvmheJ7nleBZ78GmMGFk9jHQfPmB3AB-3dAQP4aJm14gvbBRLfWL1qBTOKCRlg0wPWxAHT2tkfXjJ6kmR8zM8LG5-X93m47EIeVCVWeWRcqKyaJCct7EthRjeSq4IpyA86lJEL1G22FIyQNkRVkVliSnhZdHKyBstv8BO99zhN2CSR6tDI3TpvWq5aDyZbh7oxlTCxDKDHxu43MugfuEoa0iYugnTDC4TkFOHJFjdPyAa3Uije4vGDH4lGlzaVoR1aMa_A2icSaDK1WR5tJEltxkcz3rSdgjz5g2RbtyOSycpaNPpgDWewdnUnN5MJWYdPq-HPjZFgDqDrwPv05RkZXVRCZqqna2I2ZznLd3fP71YN-dGV2Q3v78HSkewK9L5w_0noGPYWb2u8YSCopU_7df_PzIOCGE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABUZ6BFhmExClq_IjtSEgoLawqDpyotDcrceyFS3bb3f3_zCTedCMkLpESO4o943nZk28APhXKlzxGkwdhY66C8Xmjgs-NilEWwpeNH7J8f-rrG_VjWS7Thts2pVUedOKgqLu1pz3yC4l2V1ONLP51c5tT1Sg6XU0lNB7CI4Iuo5Qus7wPuCTGXyOakMTQ_mKL5l4QwNXMBg1Q_f8q5COLNM-WPDI_i2fwNPmNrB4ZfQoPQv8cnhyhCb6ALzX7FsKGJcjUFasTXjhDx5SNYD1sgZxY7QMbnExWT7icL-Fm8f3X1XWeiiPkXlVml0eMjMqiCWjCje3Q0Wit5CqI1os26FLEVgbZhQ5DAiRbqIrKIr9EK4tORt5o-QpO-nUf3gCTPFrtG6HLtlUdF02LCpx7vDGVMLHM4OOBXG4zYmA4jB2Ipm6iaQaXRMipA8FWDw_WdyuXpMDh9yvJPe9i1ygRjUXnNEhLoGF44T6Dz8QGR8KFtPZN-kcAx0kwVa5G_aONLLnN4GzWE4XCz5sPjHRJKLfufgll8GFqpjcp0awP6_3Yx5IfqDN4PfJ9mpKsrC4qgVO1sxUxm_O8pf_ze4Ds5tzoCrXn2_-P6x08FlRfeNjiOYOT3d0-nKPTs2vfDyv7L0TxAJ4
  priority: 102
  providerName: ProQuest
Title A Deep Learning Approach for Mental Fatigue State Assessment
URI https://www.ncbi.nlm.nih.gov/pubmed/39860925
https://www.proquest.com/docview/3159619721
https://www.proquest.com/docview/3159802566
https://pubmed.ncbi.nlm.nih.gov/PMC11769183
https://doaj.org/article/e2b931c1dfda42f78916e3801818011c
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_u40UfxPPrqndLFMGnavPRJIUT6emth-Ah4sK-hSZNVkG6594u6H9_k7ZbtuiDL4U2Ce3MZL7S5DcALzPhchqCSj3TIRVeubQS3qVKhMAz5vLKtbt8r-TlTHya5_M92NbY7Bl488_ULtaTmq1-vv796887VPi3MePElP3NDbpxFoGr9uEQHZKK-vlZDD8TGOdtQet4pitFf5h1AEPjoSO31KL3_22jd5zUeAPljkea3od7fShJyk72R7Dnmwdwdwdg8CGcleSD99ekR1FdkLKHECcYq5IOv4dMUTiLjSdt3EnKAarzEcymF9_eX6Z9vYTUiUKt04DJUp5VHr260jXGHlZzKjyzjlkvcxYs97z2NWYJmDb5Iis0ipBZntU80Eryx3DQLBt_DITToKWrmMytFTVllUWbTh3eqIKpkCfwYssuc93BYhhMJyJPzcDTBM4jI4cOEcm6fbBcLUyvGAbfX3DqaB3qSrCgNMarnuuII4YX6hJ4FcVg4gxAXruqPzaA3xmRq0yJJkkqnlOdwMmoJ-qJGzdvBWm208xwjOZkrLxGE3g-NMeRce9Z45ebro-OoaFM4Ekn94EkXmiZFQxJ1aMZMaJ53NL8-N6ieFOqZIEG9el_E_gM7rBYfbhdADqBg_Vq408xJFrbCeyrucKrnn6cwOH5xdWXr5N2eWHSqsItQcYMTg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a4wAcEN8EBhgE4hQtthPbkUAoMKqOjZ02qTcTO3bZJe3WVoh_ir-R53ytERK3XSqldpv4ff3eS5zfA3ibpDaj3svYMeXj1Ekbl6mzsUy95wmzWWmbXb4nYnqWfptlsx34078LE7ZV9jGxCdTVwoZ75PsccVeEHln00_IiDl2jwtPVvoVGaxZH7vcvLNlWHw8PUL_vGJt8Pf0yjbuuArFNc7mOPZYUWVI6xD6pKkRoozhNHTOWGScy5g13vHIV5tJ4PpcnucKFMsOTintaCo7_ewNuIvAmwaPk7KrA41jvtexFnOfJ_grTCxYItUaY17QG-BcAthBwvDtzC-4m9-Bul6eSojWs-7Dj6gdwZ4u98CF8KMiBc0vSUbTOSdHxkxNMhElLDkQmqPn5xpEmqSXFwAP6CM6uRWyPYbde1O4pEE69ErZkIjMmrSgrDQIGtXggcyZ9FsGbXlx62XJuaKxVgkz1INMIPgdBDhMCTXbzxeJyrjuv03j-nFNLK1-VKfNSYTLsuAokZfhBbQTvgxp0cGaUtS27dxLwOgMtli4w3gnJM6oi2BvNRCe04-FekboLAit9ZbIRvB6Gwy_DxrbaLTbtHBXyThHBk1bvw5J4rkSSM1yqGlnEaM3jkfr8Z0MRTqkUOUbrZ_-_rldwa3r6_VgfH54cPYfbLPQ2bm4v7cHu-nLjXmDCtTYvGysn8OO63eovKQ49Iw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgE4hRtbCd-SCAUWFYtRRUHKu3NJI699JLddneF-Gv8OsZ5dSMkbr1ESuw8PO9JJt8AvE5Sm1HvZeyY8nHqpI2L1NlYpt7zhNmssE2V74k4PE2_zLP5Hvzp_4UJZZW9TWwMdbW04R35hKPfFaFHFp34rizi23T2YXUehw5S4Utr306jFZFj9_sXpm_r90dT5PUbxmafv386jLsOA7FNtdzEHtOLLCkc-kGpKvTWpeI0day0rHQiY77kjleuwrga7-10ohUumpU8qbinheB43WtwXfKMBh2T88tkj2Pu1yIZca6TyRpDDRbAtUb-r2kT8K8z2PGG40rNHdc3uwO3u5iV5K2Q3YU9V9-DWztIhvfhXU6mzq1IB9e6IHmHVU4wKCYtUBCZoRQsto40AS7JB0zQB3B6JWR7CPv1snaPgXDqlbAFE1lZphVlRYnOg1rckZpJn0XwqieXWbX4GwbzlkBTM9A0go-BkMOEAJndHFheLEyngQbvrzm1tPJVkTIvFQbGjqsAWIYbaiN4G9hggmIjrW3R_Z-AzxkgskyOtk8ETqsIDkYzUSHteLhnpOkMwtpcim8EL4fhcGYocqvdctvOUSEGFRE8avk-LIlrJRLNcKlqJBGjNY9H6rOfDVw4pVJotNxP_v9cL-AGKpT5enRy_BRustDmuHnTdAD7m4ute4ax16Z83gg5gR9XrVV_AeWaQVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Mental+Fatigue+State+Assessment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Fan%2C+Jiaxing&rft.au=Dong%2C+Lin&rft.au=Sun%2C+Gang&rft.au=Zhou%2C+Zhize&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft_id=info:doi/10.3390%2Fs25020555&rft.externalDocID=A832673518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon