A Deep Learning Approach for Mental Fatigue State Assessment
This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networ...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 2; p. 555 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s25020555 |