Global Stability Criterion for Delayed Complex-Valued Recurrent Neural Networks

The stability problem for delayed complex-valued recurrent neural networks is considered in this paper. By separating complex-valued neural networks into real and imaginary parts, forming an equivalent real-valued system, and constructing appropriate Lyapunov functional, a sufficient condition to as...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 25; no. 9; pp. 1704 - 1708
Main Authors Zhang, Ziye, Lin, Chong, Chen, Bing
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
DOI10.1109/TNNLS.2013.2288943

Cover

Loading…
More Information
Summary:The stability problem for delayed complex-valued recurrent neural networks is considered in this paper. By separating complex-valued neural networks into real and imaginary parts, forming an equivalent real-valued system, and constructing appropriate Lyapunov functional, a sufficient condition to ascertain the existence, uniqueness, and globally asymptotical stability of the equilibrium point of complex-valued systems is provided in terms of linear matrix inequality. Meanwhile, the errors in the recent work are pointed out, and even if the result therein is correct, it is shown that our result not only improves but also generalizes in that work. Numerical examples are given to show the effectiveness and merits of the present result.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2013.2288943