Image analysis of soil failure on defective underground pipe due to cyclic water supply and drainage using X-ray CT
The ground subsidence on the underground pipe often is caused with the reduction of the effective stress and the loss of suction in the base course and then, soil drainage into the pipe. The final formation of the cavity growth in the ground was observed as the ground subsidence. Authors focused thi...
Saved in:
Published in | Frontiers of Architecture and Civil Engineering in China Vol. 6; no. 2; pp. 85 - 100 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Higher Education Press
01.06.2012
SP Higher Education Press Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The ground subsidence on the underground pipe often is caused with the reduction of the effective stress and the loss of suction in the base course and then, soil drainage into the pipe. The final formation of the cavity growth in the ground was observed as the ground subsidence. Authors focused this problem and hence performed model tests with water-inflow and drainage cycle in the model ground. The mechanism of cavity generation in the model ground was observed using an X-ray Computed Tomography (CT) scanner. In those studies, water was supplied into the model grounds from the defected underground pipe model in case of the change of relative density and grain size distribution. As results, it was observed that the loosening area was generated from the defected part with water-inflow and some of the soil particles in the ground were drained into the underground pipe through the defected part. And afterward, the cavity was generated just above the defected part of the model pipe in the ground. Based on this observation, it might be said that the bulk density of soil around the defected pipe played one of key factor to generate the cavity in the ground. Moreover, the dimension of the defected part should be related to the magnification of the ground subsidence, in particular, crack width on a sewerage pipe and particle size would be the quantitative factor to evaluate the magnification of the ground subsidence. In this paper, it was concluded that the low relative density of soil would become the critical factor to cause the fatal failure of model ground if the maximum grain size was close to the dimension of crack width of defective part. The fatal collapse of the ground with high relative density more than 80% would be avoided in a few cycles of water inflow and soil drainage. |
---|---|
Bibliography: | relative density image processing Document received on :2012-01-10 Document accepted on :2012-03-29 grain property underground pipe model test X-ray CT road subsidence ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2095-2430 2095-2449 1673-7512 |
DOI: | 10.1007/s11709-012-0159-5 |