Identification of four novel large deletions and complex variants in the α-globin locus in Chinese population

At present, the methods generally used to detect α-thalassemia mutations are confined to detecting common mutations, which may lead to misdiagnosis or missed diagnosis. The single-molecule real-time (SMRT) sequencing enables long-read single-molecule sequencing with high detection accuracy, and long...

Full description

Saved in:
Bibliographic Details
Published inHuman genomics Vol. 17; no. 1; pp. 38 - 7
Main Authors Bao, Xiuqin, Wang, Jicheng, Qin, Danqing, Yao, Cuize, Liang, Jie, Liang, Kailing, Zeng, Yukun, Du, Li
Format Journal Article
LanguageEnglish
Published England BioMed Central 25.04.2023
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:At present, the methods generally used to detect α-thalassemia mutations are confined to detecting common mutations, which may lead to misdiagnosis or missed diagnosis. The single-molecule real-time (SMRT) sequencing enables long-read single-molecule sequencing with high detection accuracy, and long-length DNA chain reads in high-fidelity read mode. This study aimed to identify novel large deletions and complex variants in the α-globin locus in Chinese population. We used SMRT sequencing to detect rare and complex variants in the α-globin locus in four individuals whose hematological data indicated microcytic hypochromic anemia. However, the conventional thalassemia detection result was negative. Multiplex ligation-dependent probe amplification and droplet digital polymerase chain reaction were used to confirm SMRT sequencing results. Four novel large deletions were observed ranging from 23 to 81 kb in the α-globin locus. One patient also had a duplication of upstream of HBZ in the deletional region, while another, with a 27.31-kb deletion on chromosome 16 (hg 38), had abnormal hemoglobin Siriraj (Hb Siriraj). We first identified the four novel deletions in the α-globin locus using SMRT sequencing. Considering that the conventional methods might lead to misdiagnosis or missed diagnosis, SMRT sequencing proved to be an excellent method to discover rare and complex variants in thalassemia, especially in prenatal diagnosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1479-7364
1473-9542
1479-7364
DOI:10.1186/s40246-023-00486-4