Accelerating Differential Evolution Using an Adaptive Local Search

We propose a crossover-based adaptive local search (LS) operation for enhancing the performance of standard differential evolution (DE) algorithm. Incorporating LS heuristics is often very useful in designing an effective evolutionary algorithm for global optimization. However, determining a single...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 12; no. 1; pp. 107 - 125
Main Authors Noman, N., Iba, H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a crossover-based adaptive local search (LS) operation for enhancing the performance of standard differential evolution (DE) algorithm. Incorporating LS heuristics is often very useful in designing an effective evolutionary algorithm for global optimization. However, determining a single LS length that can serve for a wide range of problems is a critical issue. We present a LS technique to solve this problem by adaptively adjusting the length of the search, using a hill-climbing heuristic. The emphasis of this paper is to demonstrate how this LS scheme can improve the performance of DE. Experimenting with a wide range of benchmark functions, we show that the proposed new version of DE, with the adaptive LS, performs better, or at least comparably, to classic DE algorithm. Performance comparisons with other LS heuristics and with some other well-known evolutionary algorithms from literature are also presented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2007.895272