A study of surface texturing and boundary slip on improving the load support of lubricated parallel sliding contacts

Currently, there is a great interest in the use of engineered complex slip surfaces as well as the surface texturing because these surfaces are able to improve the tribological performance of lubricated contacts. In this paper, based on the modified Reynolds equation, a systematic comparison is made...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica Vol. 224; no. 2; pp. 365 - 381
Main Authors Tauviqirrahman, M., Ismail, R., Jamari, J., Schipper, D. J.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.02.2013
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Currently, there is a great interest in the use of engineered complex slip surfaces as well as the surface texturing because these surfaces are able to improve the tribological performance of lubricated contacts. In this paper, based on the modified Reynolds equation, a systematic comparison is made with various surface conditions, that is, texturing, slip, and the combination of those configurations with respect to the performance of flat classical (no-slip) contact. Optimum values of design parameters (slip length, slip zone, texture cell aspect ratio, and texturing zone), allowing for maximum load support, are presented. In the case of combined texture/slip pattern, it is shown that the load support does not practically depend on the texture cell aspect ratio. The slip effect has a much higher contribution in inducing the pressure distribution than the texturing effect. It is also demonstrated that partial texturing gives a better improvement than full texturing. However, compared to a flat complex slip surface, a partially textured surface is still less efficient to enhance the load support, even if this textured configuration is combined with a slip condition.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0001-5970
1619-6937
DOI:10.1007/s00707-012-0752-7