Electrochemically produced hydrogen peroxide affects Joliot-type oxygen-evolution measurements of photosystem II
The main technique employed to characterize the efficiency of water-splitting in photosynthetic preparations in terms of miss and double hit parameters and for the determination of Si (i=2,3,0) state lifetimes is the measurement of flash-induced oxygen oscillation pattern on bare platinum (Joliot-ty...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1837; no. 9; pp. 1411 - 1416 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The main technique employed to characterize the efficiency of water-splitting in photosynthetic preparations in terms of miss and double hit parameters and for the determination of Si (i=2,3,0) state lifetimes is the measurement of flash-induced oxygen oscillation pattern on bare platinum (Joliot-type) electrodes. We demonstrate here that this technique is not innocent. Polarization of the electrode against an Ag/AgCl electrode leads to a time-dependent formation of hydrogen peroxide by two-electron reduction of dissolved oxygen continuously supplied by the flow buffer. While the miss and double hit parameters are almost unaffected by H₂O₂, a time dependent reduction of S1 to S₋₁ occurs over a time period of 20 min. The S1 reduction can be largely prevented by adding catalase or by removing O₂ from the flow buffer with N₂. Importantly, we demonstrate that even at the shortest possible polarization times (40s in our set up) the S₂ and S₀ decays are significantly accelerated by the side reaction with H₂O₂. The removal of hydrogen peroxide leads to unperturbed S₂ state data that reveal three instead of the traditionally reported two phases of decay. In addition, even under the best conditions (catalase+N₂; 40s polarization) about 4% of S₋₁ state is observed in well dark-adapted samples, likely indicating limitations of the equal fit approach. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-3002 0005-2728 1879-2650 |
DOI: | 10.1016/j.bbabio.2014.01.013 |