Cellcano: supervised cell type identification for single cell ATAC-seq data

Computational cell type identification is a fundamental step in single-cell omics data analysis. Supervised celltyping methods have gained increasing popularity in single-cell RNA-seq data because of the superior performance and the availability of high-quality reference datasets. Recent technologic...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 1864 - 10
Main Authors Ma, Wenjing, Lu, Jiaying, Wu, Hao
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 03.04.2023
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Computational cell type identification is a fundamental step in single-cell omics data analysis. Supervised celltyping methods have gained increasing popularity in single-cell RNA-seq data because of the superior performance and the availability of high-quality reference datasets. Recent technological advances in profiling chromatin accessibility at single-cell resolution (scATAC-seq) have brought new insights to the understanding of epigenetic heterogeneity. With continuous accumulation of scATAC-seq datasets, supervised celltyping method specifically designed for scATAC-seq is in urgent need. Here we develop Cellcano, a computational method based on a two-round supervised learning algorithm to identify cell types from scATAC-seq data. The method alleviates the distributional shift between reference and target data and improves the prediction performance. After systematically benchmarking Cellcano on 50 well-designed celltyping tasks from various datasets, we show that Cellcano is accurate, robust, and computationally efficient. Cellcano is well-documented and freely available at https://marvinquiet.github.io/Cellcano/ .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37439-3