Development and Mechano-Chemical Characterization of Polymer Composite Sheets Filled with Silica Microparticles with Potential in Printing Industry

Polymer composite sheets using a low-cost filler (local natural sand) and polymer (high-density polyethylene, HDPE) as a replacement of the traditionally used wood-fiber-based sheets for paper-based applications were developed. The sand/polymer composite sheets were prepared by melt extrusion in a m...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 14; no. 16; p. 3351
Main Authors Siraj, Sidra, Al-Marzouqi, Ali H., Iqbal, Muhammad Z.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polymer composite sheets using a low-cost filler (local natural sand) and polymer (high-density polyethylene, HDPE) as a replacement of the traditionally used wood-fiber-based sheets for paper-based applications were developed. The sand/polymer composite sheets were prepared by melt extrusion in a melt blender followed by compression molding. The effects of varying particle size, concentration, and the use of a compatibilizer (polyethylene-grafted maleic anhydride) was studied on the mechano-chemical performance properties of the composite sheets such as morphology, thermal and mechanical properties, and wettability characteristics used in the printing industry. In terms of thermal stability, filler (sand) or compatibilizer addition did not alter the crystallization, melting, or degradation temperatures significantly, thereby promoting good thermal stability of the prepared sheets. Compatibilization improved anti-wetting property with water. Additionally, for the compatibilized sheets prepared from 25 µm sand particles, at 35 wt%, the contact angle with printing ink decreased from 44° to 38.30°, suggesting improved ink-wetting performance. A decrease in the elastic modulus was also observed with the addition of the compatibilizer, with comparable results to commercial stone paper. Results from this study will be considered as a first step towards understanding compatibility of local natural sand and polymers for paper-based application.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14163351