The Neuropathology of MIRAGE Syndrome

Abstract MIRAGE syndrome is a multisystem disorder characterized by myelodysplasia, infections, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy. Mutations in the sterile alpha motif domain containing 9 (SAMD9) gene which encodes a protein involved in growth factor sign...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuropathology and experimental neurology Vol. 79; no. 4; pp. 458 - 462
Main Authors Viaene, Angela N, Harding, Brian N
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.04.2020
by American Association of Neuropathologists, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract MIRAGE syndrome is a multisystem disorder characterized by myelodysplasia, infections, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy. Mutations in the sterile alpha motif domain containing 9 (SAMD9) gene which encodes a protein involved in growth factor signal transduction are thought to cause MIRAGE syndrome. SAMD9 mutations lead to an antiproliferative effect resulting in a multisystem growth restriction disorder. Though rare, a few patients with SAMD9 mutations were reported to have hydrocephalus and/or cerebellar hypoplasia on imaging. The neuropathologic features of MIRAGE syndrome have not been previously described. Here, we describe the postmortem neuropathologic examinations of 2 patients with a clinical diagnosis of MIRAGE syndrome and confirmed SAMD9 mutations. Common features included microcephaly, hydrocephalus, white matter abnormalities, and perivascular calcifications. One of the 2 cases showed marked cerebellar hypoplasia with loss of Purkinje and granule neurons as well as multifocal polymicrogyria and severe white matter volume loss; similar findings were not observed in the second patient. These cases demonstrate the variation in neuropathologic findings in patients with MIRAGE syndrome. Interestingly, the findings are similar to those reported in ataxia-pancytopenia syndrome caused by mutations in SAMD9L, a paralogue of SAMD9.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3069
1554-6578
DOI:10.1093/jnen/nlaa009