Studies on the viscoelasticity of poly(trimethylene terephthalate)/poly(ethylene-octene)/organomontmorillonite nanocomposites
The viscoelasticity of poly(trimethylene terephthalate)/maleinized poly(octene‐ethylene) copolymer/organomontmorillonite (OMMT) nanocomposites were investigated at both liquid and glassy states by using the rotational rheometer and dynamic mechanical analysis, respectively. The viscoelasticity resul...
Saved in:
Published in | Polymer composites Vol. 33; no. 6; pp. 999 - 1006 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2012
Wiley Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The viscoelasticity of poly(trimethylene terephthalate)/maleinized poly(octene‐ethylene) copolymer/organomontmorillonite (OMMT) nanocomposites were investigated at both liquid and glassy states by using the rotational rheometer and dynamic mechanical analysis, respectively. The viscoelasticity results suggest that OMMT has many important influences on the structure, modulus, toughness, and cold‐crystallization of the nanocomposites. The OMMT has a strip‐like sheet morphology in the polymer matrix and when OMMT content increases to 4 wt%, the physical network‐like structure begins to form in the nanocomposites. The pseudoplasticity of the melts is increased by OMMT. In addition, the complex viscosity, storage modulus, and viscous behavior of the melts are increased with increasing OMMT content. The creep resistance of the nanocomposites is improved by OMMT, and it plays an important role on reinforcing the melts. The stress relaxation of the melts suggests that the nanofillers can not only enhance the interfacial interactions of the nanocomposites but also inhibit the recovery of the polymer chain segments. At glassy state, the nanocomposites' storage modulus increases with increasing OMMT content. As glass transition occurs, the loss factor and loss modulus suggest that OMMT toughens the polymer matrix. At rubber‐elastic state, OMMT depresses the cold‐crystallization of the polymer matrix due to its limitation effect on the motion of molecular chains. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers |
---|---|
Bibliography: | Natural Science Foundation of Hebei Province - No. B2010000219 istex:84330D993E7338C1B1DDC5CC54F42C87422B87F7 ArticleID:PC22234 The Opening Science Foundation of the Hebei University - No. 2010005 ark:/67375/WNG-49T498MG-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.22234 |