Connexin Expression and Functional Analysis of Gap Junctional Communication in Mouse Embryonic Stem Cells

Gap junctional intercellular communication (GJIC) has been suggested to be necessary for cellular proliferation and differentiation. We wanted to investigate the function of GJIC in mouse embryonic stem (ES) cells using pharmacological inhibitors or a genetic approach to inhibit the expression of co...

Full description

Saved in:
Bibliographic Details
Published inStem cells (Dayton, Ohio) Vol. 26; no. 2; pp. 431 - 439
Main Authors Wörsdörfer, Philipp, Maxeiner, Stephan, Markopoulos, Christian, Kirfel, Gregor, Wulf, Volker, Auth, Tanja, Urschel, Stephanie, von Maltzahn, Julia, Willecke, Klaus
Format Journal Article
LanguageEnglish
Published Bristol John Wiley & Sons, Ltd 01.02.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gap junctional intercellular communication (GJIC) has been suggested to be necessary for cellular proliferation and differentiation. We wanted to investigate the function of GJIC in mouse embryonic stem (ES) cells using pharmacological inhibitors or a genetic approach to inhibit the expression of connexins, that is, the subunit proteins of gap junction channels. For this purpose, we have analyzed all known connexin genes in mouse ES cells but found only three of them, Cx31, Cx43, and Cx45, to be expressed as proteins. We have demonstrated by coimmunoprecipitation that Cx31 and Cx43, as well as Cx43 and Cx45, probably form heteromeric gap junction channels, whereas Cx31 and Cx45 do not. The pharmacological inhibitors reduced GJIC between ES cells to approximately 3% and initiated apoptosis, suggesting an antiapoptotic effect of GJIC. In contrast to these results, reduction of GJIC to approximately 5% by decreased expression of Cx31 or Cx45 via RNA interference in homozygous Cx43‐deficient ES cells did not lead to apoptosis. Additional studies suggested that apoptotic death of ES cells and adult stem cells reported in the literature is likely due to a cytotoxic side effect of the inhibitors and not due to a decrease of GJIC. Using the connexin expression pattern in mouse ES cells, as determined in this study, multiple connexin‐deficient ES cells can now be genetically engineered in which the level of GJIC is further decreased, to clarify whether the differentiation of ES cells is qualitatively or quantitatively compromised. Disclosure of potential conflicts of interest is found at the end of this article.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1066-5099
1549-4918
DOI:10.1634/stemcells.2007-0482