Compressed-Sensing multispectral imaging of the postoperative spine
Purpose: To apply compressed sensing (CS) to in vivo multispectral imaging (MSI), which uses additional encoding to avoid magnetic resonance imaging (MRI) artifacts near metal, and demonstrate the feasibility of CS‐MSI in postoperative spinal imaging. Materials and Methods: Thirteen subjects referre...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 37; no. 1; pp. 243 - 248 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.01.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose:
To apply compressed sensing (CS) to in vivo multispectral imaging (MSI), which uses additional encoding to avoid magnetic resonance imaging (MRI) artifacts near metal, and demonstrate the feasibility of CS‐MSI in postoperative spinal imaging.
Materials and Methods:
Thirteen subjects referred for spinal MRI were examined using T2‐weighted MSI. A CS undersampling factor was first determined using a structural similarity index as a metric for image quality. Next, these fully sampled datasets were retrospectively undersampled using a variable‐density random sampling scheme and reconstructed using an iterative soft‐thresholding method. The fully and undersampled images were compared using a 5‐point scale. Prospectively undersampled CS‐MSI data were also acquired from two subjects to ensure that the prospective random sampling did not affect the image quality.
Results:
A two‐fold outer reduction factor was deemed feasible for the spinal datasets. CS‐MSI images were shown to be equivalent or better than the original MSI images in all categories: nerve visualization: P = 0.00018; image artifact: P = 0.00031; image quality: P = 0.0030. No alteration of image quality and T2 contrast was observed from prospectively undersampled CS‐MSI.
Conclusion:
This study shows that the inherently sparse nature of MSI data allows modest undersampling followed by CS reconstruction with no loss of diagnostic quality. J. Magn. Reson. Imaging 2013;37:243–248. © 2012 Wiley Periodicals, Inc. |
---|---|
Bibliography: | Richard M. Lucas Foundation ark:/67375/WNG-S0P4Z5VB-8 ArticleID:JMRI23750 General Electric Healthcare istex:1D73D0BAFC8B186CC37AD4AE377F49F571AB97B8 National Institutes of Health (NIH) - No. R21-EB008190 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1053-1807 1522-2586 1522-2586 |
DOI: | 10.1002/jmri.23750 |