Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy
The stacking fault energy (SFE) of paramagnetic FeCrCoNiMn high entropy alloy is investigated as a function of temperature via ab initio calculations. We divide the SFE into three major contributions: chemical, magnetic and strain parts. Structural energies, local magnetic moments and elastic moduli...
Saved in:
Published in | Scripta materialia Vol. 108; pp. 44 - 47 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The stacking fault energy (SFE) of paramagnetic FeCrCoNiMn high entropy alloy is investigated as a function of temperature via ab initio calculations. We divide the SFE into three major contributions: chemical, magnetic and strain parts. Structural energies, local magnetic moments and elastic moduli are used to estimate the effect of temperature on each term. The present results explain the recently reported twinning observed below room-temperature and predict the occurrence of the hexagonal phase at cryogenic conditions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1359-6462 1872-8456 1872-8456 |
DOI: | 10.1016/j.scriptamat.2015.05.041 |