Efficient synthesis of kinsenoside and goodyeroside a by a chemo-enzymatic approach
Kinsenoside (1) and goodyeroside A (2), two naturally occurring stereoisomers with diverse biological activities, have been synthesized efficiently by a chemo-enzymatic approach with a total yield of 12.7%. The aglycones, (R)- and (S)-3-hydroxy-γ-butyrolactone, were prepared from D- and L-malic acid...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 19; no. 10; pp. 16950 - 16958 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
22.10.2014
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Kinsenoside (1) and goodyeroside A (2), two naturally occurring stereoisomers with diverse biological activities, have been synthesized efficiently by a chemo-enzymatic approach with a total yield of 12.7%. The aglycones, (R)- and (S)-3-hydroxy-γ-butyrolactone, were prepared from D- and L-malic acid by a four-step chemical approach with a yield of 75%, respectively. These butyrolactones were then successfully glycosidated using β-D-glucosidase as a catalyst in a homogeneous organic-water system. Under the optimized enzymatic conditions, the yields of kinsenoside and goodyeroside A in the enzymatic steps both reached 16.8%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules191016950 |