Biomarker threshold adaptive designs for survival endpoints

Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this pap...

Full description

Saved in:
Bibliographic Details
Published inJournal of biopharmaceutical statistics Vol. 28; no. 6; pp. 1038 - 1054
Main Authors Diao, Guoqing, Dong, Jun, Zeng, Donglin, Ke, Chunlei, Rong, Alan, Ibrahim, Joseph G
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 02.11.2018
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms.
AbstractList Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms.
Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms.
Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms.Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms.
Author Ibrahim, Joseph G
Ke, Chunlei
Zeng, Donglin
Diao, Guoqing
Rong, Alan
Dong, Jun
AuthorAffiliation b Amgen Inc., Thousand Oaks, California, USA
a Department of Statistics, George Mason University, Fairfax, Virginia, USA
c Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
d Astellas Pharma US, Inc., Los Angeles, California, USA
AuthorAffiliation_xml – name: c Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– name: a Department of Statistics, George Mason University, Fairfax, Virginia, USA
– name: d Astellas Pharma US, Inc., Los Angeles, California, USA
– name: b Amgen Inc., Thousand Oaks, California, USA
Author_xml – sequence: 1
  givenname: Guoqing
  orcidid: 0000-0001-7304-9591
  surname: Diao
  fullname: Diao, Guoqing
  email: gdiao@gmu.edu
  organization: Department of Statistics, George Mason University
– sequence: 2
  givenname: Jun
  surname: Dong
  fullname: Dong, Jun
  organization: Amgen Inc
– sequence: 3
  givenname: Donglin
  surname: Zeng
  fullname: Zeng, Donglin
  organization: Department of Biostatistics, University of North Carolina at Chapel Hill
– sequence: 4
  givenname: Chunlei
  surname: Ke
  fullname: Ke, Chunlei
  organization: Amgen Inc
– sequence: 5
  givenname: Alan
  surname: Rong
  fullname: Rong, Alan
  organization: Astellas Pharma US, Inc
– sequence: 6
  givenname: Joseph G
  surname: Ibrahim
  fullname: Ibrahim, Joseph G
  organization: Department of Biostatistics, University of North Carolina at Chapel Hill
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29436940$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7If-BGXAG29mPWeS-QgFqRa1hYI3eh0y-eimziZrklnpvzfL7orthSUXOZDnvHnPeU_JkQ_eEPIaYYEwwHuEllEG3aIBHBZYauT4jJxg20Dd9ohHpS5MvYWOyWlKdwDY9gN7QY4bzmjHGZyQ808urGT8aWKVl9GkZZh0JbVcZ7cxlTbJ3fpU2RCrNMeN28ipMl6vg_M5vSTPrZySebW_z8iPL5-_X17VN9--Xl9-vKkV412uNQwGwSJTqAZo-WBo24x6VKzDYt5aK_tx1GCLa8uUNBwosz3ntOlGBE7PyIed7noeV0Yr43OUk1hHV5zfiyCdePji3VLcho3oKGtYR4vAu71ADL9mk7JYuaTMNElvwpxEUzbDsS-noG8foXdhjr6MJygMfQtFryvUm38d_bVy2GsBzneAiiGlaKxQLsvswtagmwSC2KYoDimKbYpin2Lpbh91Hz54qu9i1-d8SWwlf4c4aZHl_RSijdIrV6b4v8Qf85iy2g
CitedBy_id crossref_primary_10_1080_10543406_2025_2469871
crossref_primary_10_1007_s00362_023_01433_0
crossref_primary_10_1080_10543406_2020_1832110
crossref_primary_10_1177_09622802241277764
crossref_primary_10_1002_sim_10167
crossref_primary_10_1002_pst_2208
crossref_primary_10_1080_10543406_2019_1633655
crossref_primary_10_1080_10543406_2020_1832109
crossref_primary_10_1186_s12874_023_01877_w
crossref_primary_10_1002_sim_8571
crossref_primary_10_1080_19466315_2024_2308877
Cites_doi 10.1016/S0959-8049(01)00231-3
10.1016/j.ctrv.2015.12.008
10.1158/1078-0432.CCR-05-0605
10.1038/sj.bjc.6605575
10.1002/ijc.20711
10.1016/S1470-2045(13)70181-5
10.1002/ijc.22355
10.1093/biostatistics/kxt010
10.1158/1078-0432.CCR-09-1357
ContentType Journal Article
Copyright 2018 Taylor & Francis 2018
2018 Taylor & Francis
Copyright_xml – notice: 2018 Taylor & Francis 2018
– notice: 2018 Taylor & Francis
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1080/10543406.2018.1434191
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-5711
EndPage 1054
ExternalDocumentID PMC6342463
29436940
10_1080_10543406_2018_1434191
1434191
Genre Article
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NIGMS NIH HHS
  grantid: R01 GM070335
GroupedDBID ---
.7F
.QJ
0BK
0R~
29K
30N
36B
4.4
53G
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
D-I
DGEBU
DKSSO
DU5
EAP
EBC
EBD
EBR
EBS
EBU
EHE
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
M4Z
MK0
ML~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
SV3
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
07G
1TA
AAIKQ
AAKBW
ACAGQ
ACGEE
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMXXU
BCCOT
BPLKW
C06
CAG
CGR
COF
CRFIH
CUY
CVF
DMQIW
DWIFK
ECM
EIF
IVXBP
LJTGL
NPM
NUSFT
QCRFL
TAQ
TASJS
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
7X8
5PM
ID FETCH-LOGICAL-c496t-d08e10f14c1c80598e352bdbc461201fffa7bbd0f571f4cae9034f799326b1093
ISSN 1054-3406
1520-5711
IngestDate Thu Aug 21 18:20:59 EDT 2025
Thu Jul 10 17:47:23 EDT 2025
Sat Jul 26 02:07:31 EDT 2025
Mon Jul 21 05:58:23 EDT 2025
Tue Jul 01 00:59:08 EDT 2025
Thu Apr 24 23:00:46 EDT 2025
Wed Dec 25 09:09:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Adaptive enrichment design
predictive biomarker
two-stage design
survival endpoint
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c496t-d08e10f14c1c80598e352bdbc461201fffa7bbd0f571f4cae9034f799326b1093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7304-9591
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6342463
PMID 29436940
PQID 3087504636
PQPubID 196226
PageCount 17
ParticipantIDs pubmed_primary_29436940
proquest_journals_3087504636
informaworld_taylorfrancis_310_1080_10543406_2018_1434191
crossref_citationtrail_10_1080_10543406_2018_1434191
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6342463
proquest_miscellaneous_2001917171
crossref_primary_10_1080_10543406_2018_1434191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-02
PublicationDateYYYYMMDD 2018-11-02
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-02
  day: 02
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Philadelphia
PublicationTitle Journal of biopharmaceutical statistics
PublicationTitleAlternate J Biopharm Stat
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Grandis J. R. (CIT0004) 1998; 4
Ang K. K. (CIT0001) 2002; 62
Renfro L. A. (CIT0009) 2014; 3
CIT0010
CIT0012
CIT0011
CIT0003
CIT0002
CIT0005
CIT0007
CIT0006
CIT0008
References_xml – ident: CIT0006
  doi: 10.1016/S0959-8049(01)00231-3
– ident: CIT0010
  doi: 10.1016/j.ctrv.2015.12.008
– volume: 62
  start-page: 7350
  year: 2002
  ident: CIT0001
  publication-title: Cancer Research
– ident: CIT0003
  doi: 10.1158/1078-0432.CCR-05-0605
– volume: 4
  start-page: 13
  year: 1998
  ident: CIT0004
  publication-title: Clinical Cancer Research
– ident: CIT0005
  doi: 10.1038/sj.bjc.6605575
– ident: CIT0007
  doi: 10.1002/ijc.20711
– ident: CIT0012
  doi: 10.1016/S1470-2045(13)70181-5
– ident: CIT0008
  doi: 10.1002/ijc.22355
– ident: CIT0011
  doi: 10.1093/biostatistics/kxt010
– ident: CIT0002
  doi: 10.1158/1078-0432.CCR-09-1357
– volume: 3
  year: 2014
  ident: CIT0009
  publication-title: Chinese Clinical Oncology
SSID ssj0015784
Score 2.2272646
Snippet Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used...
Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1038
SubjectTerms Adaptive enrichment design
Algorithms
Antineoplastic Agents - therapeutic use
Antineoplastic Agents, Immunological - therapeutic use
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Biostatistics - methods
Clinical Decision-Making
Clinical Trials, Phase III as Topic - methods
Clinical Trials, Phase III as Topic - statistics & numerical data
Computer Simulation
Data Interpretation, Statistical
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - genetics
ErbB Receptors - metabolism
Head and Neck Neoplasms - drug therapy
Head and Neck Neoplasms - genetics
Head and Neck Neoplasms - metabolism
Head and Neck Neoplasms - mortality
Humans
Models, Statistical
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - mortality
Panitumumab - therapeutic use
Patient Selection
Precision Medicine - methods
Precision Medicine - statistics & numerical data
predictive biomarker
Predictive Value of Tests
PTEN Phosphohydrolase - genetics
PTEN Phosphohydrolase - metabolism
Randomized Controlled Trials as Topic - methods
Randomized Controlled Trials as Topic - statistics & numerical data
Research Design - statistics & numerical data
Squamous Cell Carcinoma of Head and Neck - drug therapy
Squamous Cell Carcinoma of Head and Neck - genetics
Squamous Cell Carcinoma of Head and Neck - metabolism
Squamous Cell Carcinoma of Head and Neck - mortality
Survival Analysis
survival endpoint
Time Factors
Treatment Outcome
two-stage design
Title Biomarker threshold adaptive designs for survival endpoints
URI https://www.tandfonline.com/doi/abs/10.1080/10543406.2018.1434191
https://www.ncbi.nlm.nih.gov/pubmed/29436940
https://www.proquest.com/docview/3087504636
https://www.proquest.com/docview/2001917171
https://pubmed.ncbi.nlm.nih.gov/PMC6342463
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZb-tKXsXU3t93QYPQldeeL4gt7arZ1ZbBRWAplL0a2ZGJIba-JH7pfv3MkWXFKRrcRMEGyZOPv8_GRdM4nQt5GIuax8FIX2JC7rAgDNxWl58qcp3wieRyq3Rq-fovOL9mXq8nVensrlV2yyk-KX1vzSv4HVSgDXDFL9h-QtZ1CAfwHfOEICMPxrzCeVs01htdgoCAMm3ElacwFb1U4kFCxGUpuYbzswCLAlceyFm1TGfmmLU5pXjXtfGOWGzOOtJiz9XkrruZXP3fNz_7Dh8V9cG9n-fZD6iKsWlTr9X4dfTjv6oWshtMOfqLy77TdlMZUwsBzEhtTaWxpkAw4MzSMqMO-1WLrEEfw8lgIvgXG2iVgvVFlzh-eDw--vVYwBikLo1RrPN2Ryu6rHpKdAEYNwYjsnE4_Ts_sshIQkvVpXIn3butVUR7a9LPhq2wo2W4bj9wNqx34KbPH5JHBkp5qtjwhD2S9R44uNKi3x3S2TrhbHtMjerHWLr_dI7vfLdxPyXvLL2r5RXt-UcMvCrdLe35Ry69n5PLs0-zDuWs223ALlkYrV3iJ9L3SZ4VfJOBzJxJc81zkBQMf2PPLsuRxnguvBMhLVnCZeiEr4xT9_xw1yZ6TUd3U8iWhRSJTEUrwcybwIAXnAapC-jKR0E8oCoew_rFmhVGixw1RFplvBGt7YDIEJjPAOOTENmu1FMt9DdIhZtlKzYGVesOaLLyn7WEPcGbeeGiC2z8oiT2HvLHVYI9xkY3XsumWuK0rToHAzyEvNB_s3fa8cki8wRR7Amq9b9bU1VxpvkchC-DC-3_s84Dsrl_TQzJa3XTyFfjLq_y1eQt-A9Qqu7Y
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcqAXHuUVKGAk1FOzcmLnYXECRLVAu-phK_UWOX6oKyC7arKH8uuZyau7FaiHKoccnEnsyYw99sx8A_AhtZnOLFchSkMZSiPiUFnPQ1dqpROnM9FWaziZpdMz-f08Od_IhaGwStpD-w4oop2rSbnpMHoIicM7JURyijCIctR1wiTDHdD9RKUZVTEQfDZ6ErAPrWcZSUKiGbJ4_vearfVpC730XzbozVDKjbXp6BGYYVRdSMrPybopJ-bPDcDHuw37MTzsTVf2qZO1J3DPVXtwcNphX18dsvl1Kld9yA7Y6TUq9tUe7JJZ26FCP4WPnxfL3xQYdMkaFKaafGBMW72iyZfZNqqkZsgUVq9xLkNtYK6yq-WiaupncHb0df5lGvZlHEIjVdqElucu4j6SJjI5WnO5Q6OvtKWRaF3xyHuvs7K03CdZ5KXRTnEhfabIsiwJ7eo57FTLyr0EZnKnrHC4giZKCqt1THiDkcsdvkdYE4Acfl5heoxzKrXxq4h6KNSBhwXxsOh5GMBkJFt1IB-3EahNySia9nTFd6VQCnEL7f4gRkU_XyAJFRZowdsCeD82o6aT-0ZXbrmuqWAoba7xCuBFJ3Vjb2NkR6okDyDbksfxAUIR326pFhctmngqZIwffnWHIb2DB9P5yXFx_G324zXsUlObrhnvw05zuXZv0G5ryretYv4FYOQ0JQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIqFeeJRXoICRUE_Nykm8SSxOvFbltdpDK3GL_FRXQHbVZA_l1zPjPNqtQD1UOeTgTGKPZ-xxZuYbgDe5LVRhuYxRGnQsTJbG0noeO62kmjpVZKFaw_d5fnQivvyYDtGETR9WSWdo3wFFhLWalHtt_RARh3fKh-QUYJCUqOoESYYHoNs5gYdTFgefj44E7EJwLCNJTDRDEs__XrO1PW2Bl_7LBL0aSXlpa5rdAz0MqotI-TnZtHpi_lzBe7zRqO_D3d5wZe86SXsAt1y9BweLDvn6_JAdXyRyNYfsgC0uMLHP92CXjNoOE_ohvH2_XP2msKAz1qIoNeQBY8qqNS29zIaYkoYhT1izwZUMdYG52q5Xy7ptHsHJ7NPxh6O4L-IQGyHzNra8dAn3iTCJKdGWKx2afNpqg3OFI_Heq0Jry_20SLwwykmeCV9Isis1YV09hp16VbunwEzppM0c7p9TKTKrVEpog4krHb4nsyYCMcxdZXqEcyq08atKeiDUgYcV8bDqeRjBZCRbdxAf1xHIy4JRteHfiu8KoVTZNbT7gxRV_WqBJFRWIEC3RfB6bEY9J-eNqt1q01C5UDpa4xXBk07oxt6myI5cCh5BsSWO4wOEIb7dUi9PA5Z4nokUP_zsBkN6BXcWH2fVt8_zr89hl1pCrma6Dzvt2ca9QKOt1S-DWv4FY28yyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomarker+threshold+adaptive+designs+for+survival+endpoints&rft.jtitle=Journal+of+biopharmaceutical+statistics&rft.au=Diao%2C+Guoqing&rft.au=Dong%2C+Jun&rft.au=Zeng%2C+Donglin&rft.au=Ke%2C+Chunlei&rft.date=2018-11-02&rft.eissn=1520-5711&rft.volume=28&rft.issue=6&rft.spage=1038&rft_id=info:doi/10.1080%2F10543406.2018.1434191&rft_id=info%3Apmid%2F29436940&rft.externalDocID=29436940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-3406&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-3406&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-3406&client=summon