Biomarker threshold adaptive designs for survival endpoints
Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this pap...
Saved in:
Published in | Journal of biopharmaceutical statistics Vol. 28; no. 6; pp. 1038 - 1054 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
02.11.2018
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms. |
---|---|
AbstractList | Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms. Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms. Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms.Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms. |
Author | Ibrahim, Joseph G Ke, Chunlei Zeng, Donglin Diao, Guoqing Rong, Alan Dong, Jun |
AuthorAffiliation | b Amgen Inc., Thousand Oaks, California, USA a Department of Statistics, George Mason University, Fairfax, Virginia, USA c Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA d Astellas Pharma US, Inc., Los Angeles, California, USA |
AuthorAffiliation_xml | – name: c Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA – name: a Department of Statistics, George Mason University, Fairfax, Virginia, USA – name: d Astellas Pharma US, Inc., Los Angeles, California, USA – name: b Amgen Inc., Thousand Oaks, California, USA |
Author_xml | – sequence: 1 givenname: Guoqing orcidid: 0000-0001-7304-9591 surname: Diao fullname: Diao, Guoqing email: gdiao@gmu.edu organization: Department of Statistics, George Mason University – sequence: 2 givenname: Jun surname: Dong fullname: Dong, Jun organization: Amgen Inc – sequence: 3 givenname: Donglin surname: Zeng fullname: Zeng, Donglin organization: Department of Biostatistics, University of North Carolina at Chapel Hill – sequence: 4 givenname: Chunlei surname: Ke fullname: Ke, Chunlei organization: Amgen Inc – sequence: 5 givenname: Alan surname: Rong fullname: Rong, Alan organization: Astellas Pharma US, Inc – sequence: 6 givenname: Joseph G surname: Ibrahim fullname: Ibrahim, Joseph G organization: Department of Biostatistics, University of North Carolina at Chapel Hill |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29436940$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoNU7If-BGXAG29mPWeS-QgFqRa1hYI3eh0y-eimziZrklnpvzfL7orthSUXOZDnvHnPeU_JkQ_eEPIaYYEwwHuEllEG3aIBHBZYauT4jJxg20Dd9ohHpS5MvYWOyWlKdwDY9gN7QY4bzmjHGZyQ808urGT8aWKVl9GkZZh0JbVcZ7cxlTbJ3fpU2RCrNMeN28ipMl6vg_M5vSTPrZySebW_z8iPL5-_X17VN9--Xl9-vKkV412uNQwGwSJTqAZo-WBo24x6VKzDYt5aK_tx1GCLa8uUNBwosz3ntOlGBE7PyIed7noeV0Yr43OUk1hHV5zfiyCdePji3VLcho3oKGtYR4vAu71ADL9mk7JYuaTMNElvwpxEUzbDsS-noG8foXdhjr6MJygMfQtFryvUm38d_bVy2GsBzneAiiGlaKxQLsvswtagmwSC2KYoDimKbYpin2Lpbh91Hz54qu9i1-d8SWwlf4c4aZHl_RSijdIrV6b4v8Qf85iy2g |
CitedBy_id | crossref_primary_10_1080_10543406_2025_2469871 crossref_primary_10_1007_s00362_023_01433_0 crossref_primary_10_1080_10543406_2020_1832110 crossref_primary_10_1177_09622802241277764 crossref_primary_10_1002_sim_10167 crossref_primary_10_1002_pst_2208 crossref_primary_10_1080_10543406_2019_1633655 crossref_primary_10_1080_10543406_2020_1832109 crossref_primary_10_1186_s12874_023_01877_w crossref_primary_10_1002_sim_8571 crossref_primary_10_1080_19466315_2024_2308877 |
Cites_doi | 10.1016/S0959-8049(01)00231-3 10.1016/j.ctrv.2015.12.008 10.1158/1078-0432.CCR-05-0605 10.1038/sj.bjc.6605575 10.1002/ijc.20711 10.1016/S1470-2045(13)70181-5 10.1002/ijc.22355 10.1093/biostatistics/kxt010 10.1158/1078-0432.CCR-09-1357 |
ContentType | Journal Article |
Copyright | 2018 Taylor & Francis 2018 2018 Taylor & Francis |
Copyright_xml | – notice: 2018 Taylor & Francis 2018 – notice: 2018 Taylor & Francis |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1080/10543406.2018.1434191 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1520-5711 |
EndPage | 1054 |
ExternalDocumentID | PMC6342463 29436940 10_1080_10543406_2018_1434191 1434191 |
Genre | Article Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA142538 – fundername: NIGMS NIH HHS grantid: R01 GM070335 |
GroupedDBID | --- .7F .QJ 0BK 0R~ 29K 30N 36B 4.4 53G 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AHQJS AIJEM AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 D-I DGEBU DKSSO DU5 EAP EBC EBD EBR EBS EBU EHE EJD EMB EMK EMOBN EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM M4Z MK0 ML~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF SV3 TBQAZ TDBHL TEJ TFL TFT TFW TH9 TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 07G 1TA AAIKQ AAKBW ACAGQ ACGEE AEUMN AGCQS AGLEN AGROQ AHMOU ALCKM AMEWO AMXXU BCCOT BPLKW C06 CAG CGR COF CRFIH CUY CVF DMQIW DWIFK ECM EIF IVXBP LJTGL NPM NUSFT QCRFL TAQ TASJS TFMCV TOXWX UB9 UU8 V3K V4Q 7X8 5PM |
ID | FETCH-LOGICAL-c496t-d08e10f14c1c80598e352bdbc461201fffa7bbd0f571f4cae9034f799326b1093 |
ISSN | 1054-3406 1520-5711 |
IngestDate | Thu Aug 21 18:20:59 EDT 2025 Thu Jul 10 17:47:23 EDT 2025 Sat Jul 26 02:07:31 EDT 2025 Mon Jul 21 05:58:23 EDT 2025 Tue Jul 01 00:59:08 EDT 2025 Thu Apr 24 23:00:46 EDT 2025 Wed Dec 25 09:09:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Adaptive enrichment design predictive biomarker two-stage design survival endpoint |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c496t-d08e10f14c1c80598e352bdbc461201fffa7bbd0f571f4cae9034f799326b1093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7304-9591 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6342463 |
PMID | 29436940 |
PQID | 3087504636 |
PQPubID | 196226 |
PageCount | 17 |
ParticipantIDs | pubmed_primary_29436940 proquest_journals_3087504636 informaworld_taylorfrancis_310_1080_10543406_2018_1434191 crossref_citationtrail_10_1080_10543406_2018_1434191 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6342463 proquest_miscellaneous_2001917171 crossref_primary_10_1080_10543406_2018_1434191 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-02 |
PublicationDateYYYYMMDD | 2018-11-02 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Philadelphia |
PublicationTitle | Journal of biopharmaceutical statistics |
PublicationTitleAlternate | J Biopharm Stat |
PublicationYear | 2018 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Grandis J. R. (CIT0004) 1998; 4 Ang K. K. (CIT0001) 2002; 62 Renfro L. A. (CIT0009) 2014; 3 CIT0010 CIT0012 CIT0011 CIT0003 CIT0002 CIT0005 CIT0007 CIT0006 CIT0008 |
References_xml | – ident: CIT0006 doi: 10.1016/S0959-8049(01)00231-3 – ident: CIT0010 doi: 10.1016/j.ctrv.2015.12.008 – volume: 62 start-page: 7350 year: 2002 ident: CIT0001 publication-title: Cancer Research – ident: CIT0003 doi: 10.1158/1078-0432.CCR-05-0605 – volume: 4 start-page: 13 year: 1998 ident: CIT0004 publication-title: Clinical Cancer Research – ident: CIT0005 doi: 10.1038/sj.bjc.6605575 – ident: CIT0007 doi: 10.1002/ijc.20711 – ident: CIT0012 doi: 10.1016/S1470-2045(13)70181-5 – ident: CIT0008 doi: 10.1002/ijc.22355 – ident: CIT0011 doi: 10.1093/biostatistics/kxt010 – ident: CIT0002 doi: 10.1158/1078-0432.CCR-09-1357 – volume: 3 year: 2014 ident: CIT0009 publication-title: Chinese Clinical Oncology |
SSID | ssj0015784 |
Score | 2.2272646 |
Snippet | Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used... Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1038 |
SubjectTerms | Adaptive enrichment design Algorithms Antineoplastic Agents - therapeutic use Antineoplastic Agents, Immunological - therapeutic use Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Biostatistics - methods Clinical Decision-Making Clinical Trials, Phase III as Topic - methods Clinical Trials, Phase III as Topic - statistics & numerical data Computer Simulation Data Interpretation, Statistical ErbB Receptors - antagonists & inhibitors ErbB Receptors - genetics ErbB Receptors - metabolism Head and Neck Neoplasms - drug therapy Head and Neck Neoplasms - genetics Head and Neck Neoplasms - metabolism Head and Neck Neoplasms - mortality Humans Models, Statistical Neoplasms - drug therapy Neoplasms - genetics Neoplasms - metabolism Neoplasms - mortality Panitumumab - therapeutic use Patient Selection Precision Medicine - methods Precision Medicine - statistics & numerical data predictive biomarker Predictive Value of Tests PTEN Phosphohydrolase - genetics PTEN Phosphohydrolase - metabolism Randomized Controlled Trials as Topic - methods Randomized Controlled Trials as Topic - statistics & numerical data Research Design - statistics & numerical data Squamous Cell Carcinoma of Head and Neck - drug therapy Squamous Cell Carcinoma of Head and Neck - genetics Squamous Cell Carcinoma of Head and Neck - metabolism Squamous Cell Carcinoma of Head and Neck - mortality Survival Analysis survival endpoint Time Factors Treatment Outcome two-stage design |
Title | Biomarker threshold adaptive designs for survival endpoints |
URI | https://www.tandfonline.com/doi/abs/10.1080/10543406.2018.1434191 https://www.ncbi.nlm.nih.gov/pubmed/29436940 https://www.proquest.com/docview/3087504636 https://www.proquest.com/docview/2001917171 https://pubmed.ncbi.nlm.nih.gov/PMC6342463 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZb-tKXsXU3t93QYPQldeeL4gt7arZ1ZbBRWAplL0a2ZGJIba-JH7pfv3MkWXFKRrcRMEGyZOPv8_GRdM4nQt5GIuax8FIX2JC7rAgDNxWl58qcp3wieRyq3Rq-fovOL9mXq8nVensrlV2yyk-KX1vzSv4HVSgDXDFL9h-QtZ1CAfwHfOEICMPxrzCeVs01htdgoCAMm3ElacwFb1U4kFCxGUpuYbzswCLAlceyFm1TGfmmLU5pXjXtfGOWGzOOtJiz9XkrruZXP3fNz_7Dh8V9cG9n-fZD6iKsWlTr9X4dfTjv6oWshtMOfqLy77TdlMZUwsBzEhtTaWxpkAw4MzSMqMO-1WLrEEfw8lgIvgXG2iVgvVFlzh-eDw--vVYwBikLo1RrPN2Ryu6rHpKdAEYNwYjsnE4_Ts_sshIQkvVpXIn3butVUR7a9LPhq2wo2W4bj9wNqx34KbPH5JHBkp5qtjwhD2S9R44uNKi3x3S2TrhbHtMjerHWLr_dI7vfLdxPyXvLL2r5RXt-UcMvCrdLe35Ry69n5PLs0-zDuWs223ALlkYrV3iJ9L3SZ4VfJOBzJxJc81zkBQMf2PPLsuRxnguvBMhLVnCZeiEr4xT9_xw1yZ6TUd3U8iWhRSJTEUrwcybwIAXnAapC-jKR0E8oCoew_rFmhVGixw1RFplvBGt7YDIEJjPAOOTENmu1FMt9DdIhZtlKzYGVesOaLLyn7WEPcGbeeGiC2z8oiT2HvLHVYI9xkY3XsumWuK0rToHAzyEvNB_s3fa8cki8wRR7Amq9b9bU1VxpvkchC-DC-3_s84Dsrl_TQzJa3XTyFfjLq_y1eQt-A9Qqu7Y |
linkProvider | EBSCOhost |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcqAXHuUVKGAk1FOzcmLnYXECRLVAu-phK_UWOX6oKyC7arKH8uuZyau7FaiHKoccnEnsyYw99sx8A_AhtZnOLFchSkMZSiPiUFnPQ1dqpROnM9FWaziZpdMz-f08Od_IhaGwStpD-w4oop2rSbnpMHoIicM7JURyijCIctR1wiTDHdD9RKUZVTEQfDZ6ErAPrWcZSUKiGbJ4_vearfVpC730XzbozVDKjbXp6BGYYVRdSMrPybopJ-bPDcDHuw37MTzsTVf2qZO1J3DPVXtwcNphX18dsvl1Kld9yA7Y6TUq9tUe7JJZ26FCP4WPnxfL3xQYdMkaFKaafGBMW72iyZfZNqqkZsgUVq9xLkNtYK6yq-WiaupncHb0df5lGvZlHEIjVdqElucu4j6SJjI5WnO5Q6OvtKWRaF3xyHuvs7K03CdZ5KXRTnEhfabIsiwJ7eo57FTLyr0EZnKnrHC4giZKCqt1THiDkcsdvkdYE4Acfl5heoxzKrXxq4h6KNSBhwXxsOh5GMBkJFt1IB-3EahNySia9nTFd6VQCnEL7f4gRkU_XyAJFRZowdsCeD82o6aT-0ZXbrmuqWAoba7xCuBFJ3Vjb2NkR6okDyDbksfxAUIR326pFhctmngqZIwffnWHIb2DB9P5yXFx_G324zXsUlObrhnvw05zuXZv0G5ryretYv4FYOQ0JQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIqFeeJRXoICRUE_Nykm8SSxOvFbltdpDK3GL_FRXQHbVZA_l1zPjPNqtQD1UOeTgTGKPZ-xxZuYbgDe5LVRhuYxRGnQsTJbG0noeO62kmjpVZKFaw_d5fnQivvyYDtGETR9WSWdo3wFFhLWalHtt_RARh3fKh-QUYJCUqOoESYYHoNs5gYdTFgefj44E7EJwLCNJTDRDEs__XrO1PW2Bl_7LBL0aSXlpa5rdAz0MqotI-TnZtHpi_lzBe7zRqO_D3d5wZe86SXsAt1y9BweLDvn6_JAdXyRyNYfsgC0uMLHP92CXjNoOE_ohvH2_XP2msKAz1qIoNeQBY8qqNS29zIaYkoYhT1izwZUMdYG52q5Xy7ptHsHJ7NPxh6O4L-IQGyHzNra8dAn3iTCJKdGWKx2afNpqg3OFI_Heq0Jry_20SLwwykmeCV9Isis1YV09hp16VbunwEzppM0c7p9TKTKrVEpog4krHb4nsyYCMcxdZXqEcyq08atKeiDUgYcV8bDqeRjBZCRbdxAf1xHIy4JRteHfiu8KoVTZNbT7gxRV_WqBJFRWIEC3RfB6bEY9J-eNqt1q01C5UDpa4xXBk07oxt6myI5cCh5BsSWO4wOEIb7dUi9PA5Z4nokUP_zsBkN6BXcWH2fVt8_zr89hl1pCrma6Dzvt2ca9QKOt1S-DWv4FY28yyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomarker+threshold+adaptive+designs+for+survival+endpoints&rft.jtitle=Journal+of+biopharmaceutical+statistics&rft.au=Diao%2C+Guoqing&rft.au=Dong%2C+Jun&rft.au=Zeng%2C+Donglin&rft.au=Ke%2C+Chunlei&rft.date=2018-11-02&rft.eissn=1520-5711&rft.volume=28&rft.issue=6&rft.spage=1038&rft_id=info:doi/10.1080%2F10543406.2018.1434191&rft_id=info%3Apmid%2F29436940&rft.externalDocID=29436940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-3406&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-3406&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-3406&client=summon |