Biomarker threshold adaptive designs for survival endpoints
Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this pap...
Saved in:
Published in | Journal of biopharmaceutical statistics Vol. 28; no. 6; pp. 1038 - 1054 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
02.11.2018
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Due to the importance of precision medicine, it is essential to identify the right patients for the right treatment. Biomarkers, which have been commonly used in clinical research as well as in clinical practice, can facilitate selection of patients with a good response to the treatment. In this paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first stage, we determine subgroups for one or more biomarkers such that patients in these subgroups benefit the most from the new treatment. The analysis in this stage can be based on historical or pilot studies. In the second stage, we sample subjects from the subgroups determined in the first stage and randomly allocate them to the treatment or control group. Extensive simulation studies are conducted to examine the performance of the proposed design. Application to a real data example is provided for implementation of the first-stage algorithms. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1054-3406 1520-5711 1520-5711 |
DOI: | 10.1080/10543406.2018.1434191 |