Phenylmethimazole blocks dsRNA-induced IRF3 nuclear translocation and homodimerization

Previous studies revealed that phenylmethimazole (C10) inhibits IRF3 signaling, preventing dsRNA-induction of type 1 interferon gene expression, production, and downstream signaling. In the present study, we investigated the molecular basis for C10 inhibition of dsRNA-stimulated IRF3 signaling. IRF-...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 17; no. 10; pp. 12365 - 12377
Main Authors Courreges, Maria C, Kantake, Noriko, Goetz, Douglas J, Schwartz, Frank L, McCall, Kelly D
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.10.2012
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous studies revealed that phenylmethimazole (C10) inhibits IRF3 signaling, preventing dsRNA-induction of type 1 interferon gene expression, production, and downstream signaling. In the present study, we investigated the molecular basis for C10 inhibition of dsRNA-stimulated IRF3 signaling. IRF-3 Trans-AM assays were used to measure C10 effects on dsRNA induction of IRF3 DNA binding. Green fluorescent protein-labeled IRF3 was used to measure C10 effects on dsRNA-induced IRF3 nuclear translocation. Native PAGE, SDS PAGE, and western blotting were used to identify effects of C10 on IRF3 homodimer formation and phosphorylation, respectively. There was a significant impairment of dsRNA-induced IRF3 DNA binding activity in human embryonic kidney and pancreatic cancer cells with C10 treatment. C10 also blocked dsRNA-induced IRF3 nuclear translocation and homodimer formation without blocking serine 396 phosphorylation of IRF3. Together, these results indicate that C10 interferes with IRF3 signaling by blocking dsRNA-induced IRF3 homodimer formation, a prerequisite for nuclear translocation and DNA binding activities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules171012365