Nanobody-Based Blocking of Binding ELISA for the Detection of Anti-NS1 Zika-Virus-Specific Antibodies in Convalescent Patients
Zika virus has spread around the world with rapid pace in the last five years. Although symptoms are typically mild and unspecific, Zika's major impact occurs during pregnancy, generating a congenital syndrome. Serology plays a key role in its diagnosis. However, its use is limited due to the u...
Saved in:
Published in | Tropical medicine and infectious disease Vol. 8; no. 1; p. 55 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Zika virus has spread around the world with rapid pace in the last five years. Although symptoms are typically mild and unspecific, Zika's major impact occurs during pregnancy, generating a congenital syndrome. Serology plays a key role in its diagnosis. However, its use is limited due to the uncertainty caused by the cross-reaction of antibodies elicited in response to other flavivirus infections when tested in direct immunoassays. Using a panel of previously generated anti-Zika non-structural protein 1 (NS1) nanobodies, a set was selected that only recognizes epitopes present in Zika and is immunogenic to humans. A proper arrangement of these nanobodies was made and conditions were optimized in order to develop a novel serology assay. This new ELISA relies on the inhibition of the binding of a set of selected nanobodies to Zika-immobilized NS1 when previously incubated with Zika convalescent sera. Using the developed blocking of binding assay, it was possible to discriminate between Zika-specific and cross-reactive antibodies in serum samples from infections with Zika and other flaviviruses. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2414-6366 2414-6366 |
DOI: | 10.3390/tropicalmed8010055 |