Strong stress-composition coupling in lithium alloy nanoparticles

The stress inevitably imposed during electrochemical reactions is expected to fundamentally affect the electrochemistry, phase behavior and morphology of electrodes in service. Here, we show a strong stress-composition coupling in lithium binary alloys during the lithiation of tin-tin oxide core-she...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 3428 - 8
Main Authors Seo, Hyeon Kook, Park, Jae Yeol, Chang, Joon Ha, Dae, Kyun Sung, Noh, Myoung-Sub, Kim, Sung-Soo, Kang, Chong-Yun, Zhao, Kejie, Kim, Sangtae, Yuk, Jong Min
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 31.07.2019
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The stress inevitably imposed during electrochemical reactions is expected to fundamentally affect the electrochemistry, phase behavior and morphology of electrodes in service. Here, we show a strong stress-composition coupling in lithium binary alloys during the lithiation of tin-tin oxide core-shell nanoparticles. Using in situ graphene liquid cell electron microscopy imaging, we visualise the generation of a non-uniform composition field in the nanoparticles during lithiation. Stress models based on density functional theory calculations show that the composition gradient is proportional to the applied stress. Based on this coupling, we demonstrate that we can directionally control the lithium distribution by applying different stresses to lithium alloy materials. Our results provide insights into stress-lithium electrochemistry coupling at the nanoscale and suggest potential applications of lithium alloy nanoparticles.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-11361-z