Temperature- and diameter-dependent electrical conductivity of nitrogen doped ZnO nanowires
A modified formula to calculate the axial conductivity of nanowires was proposed based on the one-dimensional quantum state density distribution and Boltzmann transport theory. Numerical simulations of the ZnO nanowires (ZnONWs) and Nitrogen-doped ZnO nanowires (N-ZnONWs) were implemented using data...
Saved in:
Published in | The European physical journal. B, Condensed matter physics Vol. 92; no. 7; pp. 1 - 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A modified formula to calculate the axial conductivity of nanowires was proposed based on the one-dimensional quantum state density distribution and Boltzmann transport theory. Numerical simulations of the ZnO nanowires (ZnONWs) and Nitrogen-doped ZnO nanowires (N-ZnONWs) were implemented using data from the first principles calculation. The results indicate that ZnONWs are low-conductivity wide band-gap semiconductors owing to their low carrier concentrations at room temperature, with N-doping increasing the conductivity. The N-ZnONWs carrier concentrations increased with increasing temperature, and possessed significantly higher carrier concentrations than ZnONWs. With an increase in diameter, the ZnONWs conductivities increased, whereas the N-ZnONWs conductivities decreased.
Graphical abstract |
---|---|
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1140/epjb/e2019-100208-3 |