Stereochemical and structural effects of (2R,6R)-hydroxynorketamine on the mitochondrial metabolome in PC-12 cells
Impairment in mitochondrial biogenesis and function plays a key role in depression and anxiety, both of which being associated with changes in fatty acid and phospholipid metabolism. The antidepressant effects of (R,S)-ketamine have been linked to its conversion into (2S,6S;2R,6R)-hydroxynorketamine...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1862; no. 6; pp. 1505 - 1515 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Impairment in mitochondrial biogenesis and function plays a key role in depression and anxiety, both of which being associated with changes in fatty acid and phospholipid metabolism. The antidepressant effects of (R,S)-ketamine have been linked to its conversion into (2S,6S;2R,6R)-hydroxynorketamine (HNK); however, the connection between structure and stereochemistry of ketamine and HNK in the mitochondrial homeostatic response has not yet been fully elucidated at a metabolic level.
We used a multi-platform, non-targeted metabolomics approach to study the change in mitochondrial metabolome of PC-12 cells treated with ketamine and HNK enantiomers. The identified metabolites were grouped into pathways in order to assess global responses.
Treatment with (2R,6R)-HNK elicited the significant change in 49 metabolites and associated pathways implicated in fundamental mitochondrial functions such as TCA cycle, branched-chain amino acid biosynthetic pathway, glycoxylate metabolic pathway, and fatty acid β-oxidation. The affected metabolites included glycerate, citrate, leucine, N,N-dimethylglycine, 3-hexenedioic acid, and carnitine and attenuated signals associated with 9 fatty acids and elaidic acid. Important metabolites involved in the purine and pyrimidine pathways were also affected by (2R-6R)-HNK. This global metabolic profile was not as strongly impacted by treatment with (2S,6S)-HNK, (R)- and (S)-ketamine and in some instances opposite effects were observed.
The present data provide an overall view of the metabolic changes in mitochondrial function produced by (2R,6R)-HNK and related ketamine compounds and offer an insight into the source of the observed variance in antidepressant response elicited by the compounds.
[Display omitted]
•(2R,6R)-HNK produced significant changes in mitochondrial pathways.•(2S,6S)-HNK, (R)-ketamine and (S)-ketamine yielded different effects.•Results reflect difference in antidepressant response elicited by the compounds.•A new hypothesis describing the antidepressant response produced by (2R,6R)-HNK |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0304-4165 0006-3002 1872-8006 1878-2434 |
DOI: | 10.1016/j.bbagen.2018.03.008 |