Vibrating interventional device detection using real-time 3-D color Doppler

Ultrasound image guidance of interventional devices during minimally invasive surgery provides the clinician with improved soft tissue contrast while reducing ionizing radiation exposure. One problem with ultrasound image guidance is poor visualization of the device tip during the clinical procedure...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 55; no. 6; pp. 1355 - 1362
Main Authors Fronheiser, M.P., Idriss, S.F., Wolf, P.D., Smith, S.W.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ultrasound image guidance of interventional devices during minimally invasive surgery provides the clinician with improved soft tissue contrast while reducing ionizing radiation exposure. One problem with ultrasound image guidance is poor visualization of the device tip during the clinical procedure. We have described previously guidance of several interventional devices using a real-time 3-D (RT3-D) ultrasound system with 3-D color Doppler combined with the ColorMark technology. We then developed an analytical model for a vibrating needle to maximize the tip vibrations and improve the reliability and sensitivity of our technique. In this paper, we use the analytical model and improved radiofrequency (RF) and color Doppler filters to detect two different vibrating devices in water tank experiments as well as in an in vivo canine experiment. We performed water tank experiments with four different 3- D transducers: a 5 MHz transesophageal (TEE) probe, a 5 MHz transthoracic (TTE) probe, a 5 MHz intracardiac catheter (ICE) transducer, and a 2.5 MHz commercial TTE probe. Each transducer was used to scan an aortic graft suspended in the water tank. An atrial septal puncture needle and an endomyocardial biopsy forceps, each vibrating at 1.3 kHz, were inserted into the vascular graft and were tracked using 3-D color Doppler. Improved RF and wall filters increased the detected color Doppler sensitivity by 14 dB. In three simultaneous planes from the in vivo 3-D scan, we identified both the septal puncture needle and the biopsy forceps within the right atrium using the 2.5 MHz probe. A new display filter was used to suppress the unwanted flash artifact associated with physiological motion.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2008.798