Eigenvectors from Eigenvalues Sparse Principal Component Analysis
We present a novel technique for sparse principal component analysis. This method, named eigenvectors from eigenvalues sparse principal component analysis (EESPCA), is based on the formula for computing squared eigenvector loadings of a Hermitian matrix from the eigenvalues of the full matrix and as...
Saved in:
Published in | Journal of computational and graphical statistics Vol. 31; no. 2; pp. 486 - 501 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
03.04.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present a novel technique for sparse principal component analysis. This method, named eigenvectors from eigenvalues sparse principal component analysis (EESPCA), is based on the formula for computing squared eigenvector loadings of a Hermitian matrix from the eigenvalues of the full matrix and associated sub-matrices. We explore two versions of the EESPCA method: a version that uses a fixed threshold for inducing sparsity and a version that selects the threshold via cross-validation. Relative to the state-of-the-art sparse PCA methods of Witten et al., Yuan and Zhang, and Tan et al., the fixed threshold EESPCA technique offers an order-of-magnitude improvement in computational speed, does not require estimation of tuning parameters via cross-validation, and can more accurately identify true zero principal component loadings across a range of data matrix sizes and covariance structures. Importantly, the EESPCA method achieves these benefits while maintaining out-of-sample reconstruction error and PC estimation error close to the lowest error generated by all evaluated approaches. EESPCA is a practical and effective technique for sparse PCA with particular relevance to computationally demanding statistical problems such as the analysis of high-dimensional datasets or application of statistical techniques like resampling that involve the repeated calculation of sparse PCs.
Supplementary materials
for this article are available online. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1061-8600 1537-2715 |
DOI: | 10.1080/10618600.2021.1987254 |