IL-1β-primed mesenchymal stromal cells exert enhanced therapeutic effects to alleviate Chronic Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) seriously affects patient health. Despite the elusiveness of innate therapeutic effects, mesenchymal stromal cells (MSCs) hold great promise for inflammation-related diseases. Recent evidence indicates that disease-specific inflammatory cyto...

Full description

Saved in:
Bibliographic Details
Published inStem cell research & therapy Vol. 12; no. 1; p. 514
Main Authors Liu, Hanchao, Zhu, Xinning, Cao, Xiaohui, Chi, Ani, Dai, Jian, Wang, Zhenqing, Deng, Chunhua, Zhang, Min
Format Journal Article
LanguageEnglish
Published England BioMed Central 25.09.2021
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) seriously affects patient health. Despite the elusiveness of innate therapeutic effects, mesenchymal stromal cells (MSCs) hold great promise for inflammation-related diseases. Recent evidence indicates that disease-specific inflammatory cytokines could enhance the therapeutic effects of MSCs. By establishing a CP/CPPS mouse model and pretreating MSCs with the cytokine interleukin-1β (IL-1β), we studied the IL-1β-primed MSC immunoregulatory ability and targeted migration ability in vitro and in CP/CPPS mice. IL-1β levels significantly increased in the prostate tissue and serum of experimental autoimmune prostatitis (EAP) mice. Pretreatment with IL-1β enhanced the immunomodulatory potential and targeted migration of MSCs in vitro. Furthermore, intravenous infusion of IL-1β-primed MSCs dampened inflammation in prostate tissues and alleviated hyperalgesia in EAP mice. The infused MSCs inhibited monocyte infiltration and promoted regulatory T lymphocyte formation in prostate tissue, thus remodeling the local environment. Surprisingly, IL-1β-primed MSCs exhibited improved accumulation in the spleen but not in prostate tissue. Accordingly, infused MSCs reshaped systemic immunity by reducing the proportion of Ly6C CD11b monocytes and boosting the proportion of CD4 Foxp3 regulatory T lymphocytes in the spleen and lung. Inflammatory chemokine (C-C motif) ligand 2 (CCL2) decreased through the downregulation of the NF-κB and JNK/MAPK pathways by inflammatory resolution via MSCs infusion to alleviate pain. In summary, IL-1β-primed MSCs restored systemic immunologic homeostasis to alleviate CP/CPPS by modulating systemic immunity. These findings provide a novel strategy to boost the therapeutic effects of MSC-based therapy for CP/CPPS and reveal the essential role of systematic immunity in the treatment of CP/CPPS with MSC infusion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1757-6512
1757-6512
DOI:10.1186/s13287-021-02579-0