Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis
Amino acid sequences of 2 giant non-structural polyproteins (F1 and F2) of infectious bronchitis virus (IBV), a member of Coronaviridae, were compared, by computer-assisted methods, to sequences of a number of other positive strand RNA viral and cellular proteins. By this approach, juxtaposed putati...
Saved in:
Published in | Nucleic Acids Research Vol. 17; no. 12; pp. 4847 - 4861 |
---|---|
Main Authors | , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Oxford
Oxford University Press
26.06.1989
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Amino acid sequences of 2 giant non-structural polyproteins (F1 and F2) of infectious bronchitis virus (IBV), a member of Coronaviridae, were compared, by computer-assisted methods, to sequences of a number of other positive strand RNA viral and cellular proteins. By this approach, juxtaposed putative RNA-dependent RNA polymerase, nucleic acid binding ("finger"-like) and RNA helicase domains were identified in F2. Together, these domains might constitute the core of the protein complex involved in the primer-dependent transcription, replication and recombination of coronaviruses. In F1, two cysteine protease-like domains and a growth factor-like one were revealed. One of the putative proteases of IBV is similar to 3C proteases of picornaviruses and related enzymes of como-, nepo- and potyviruses. Search of IBV F1 and F2 sequences for sites similar to those cleaved by the latter proteases and intercomparison of the surrounding sequence stretches revealed 13 dipeptides Q/S(G) which are probably cleaved by the coronavirus 3C-like protease. Based on these observations, a partial tentative scheme for the functional organization and expression strategy of the non-structural polyproteins of IBV was proposed. It implies that, despite the general similarity to other positive strand RNA viruses, and particularly to potyviruses, coronaviruses possess a number of unique structural and functional features. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/17.12.4847 |