Modeling and correction of bolus dispersion effects in dynamic susceptibility contrast MRI

Purpose Bolus dispersion in DSC‐MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 72; no. 6; pp. 1762 - 1774
Main Authors Mehndiratta, Amit, Calamante, Fernando, MacIntosh, Bradley J., Crane, David E., Payne, Stephen J., Chappell, Michael A.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.25077

Cover

Loading…
Abstract Purpose Bolus dispersion in DSC‐MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function. Methods VM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease. Results Simulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio = 0.57–0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low‐to‐medium dispersion; CBFratio = 0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations. Conclusion In patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method. Magn Reson Med 72:1762–1774, 2014. © 2014 Wiley Periodicals, Inc.
AbstractList Purpose Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function. Methods VM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease. Results Simulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio=0.57-0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low-to-medium dispersion; CBFratio=0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations. Conclusion In patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method. Magn Reson Med 72:1762-1774, 2014. © 2014 Wiley Periodicals, Inc.
Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function.PURPOSEBolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function.VM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease.METHODSVM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease.Simulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio = 0.57-0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low-to-medium dispersion; CBFratio = 0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations.RESULTSSimulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio = 0.57-0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low-to-medium dispersion; CBFratio = 0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations.In patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method.CONCLUSIONIn patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method.
Purpose Bolus dispersion in DSC‐MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function. Methods VM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease. Results Simulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio = 0.57–0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low‐to‐medium dispersion; CBFratio = 0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations. Conclusion In patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method. Magn Reson Med 72:1762–1774, 2014. © 2014 Wiley Periodicals, Inc.
Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function. VM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease. Simulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio = 0.57-0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low-to-medium dispersion; CBFratio = 0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations. In patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method.
Author Crane, David E.
Mehndiratta, Amit
Payne, Stephen J.
Chappell, Michael A.
Calamante, Fernando
MacIntosh, Bradley J.
Author_xml – sequence: 1
  givenname: Amit
  surname: Mehndiratta
  fullname: Mehndiratta, Amit
  email: amit.mehndiratta@keble.ox.ac.uk
  organization: Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
– sequence: 2
  givenname: Fernando
  surname: Calamante
  fullname: Calamante, Fernando
  organization: Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
– sequence: 3
  givenname: Bradley J.
  surname: MacIntosh
  fullname: MacIntosh, Bradley J.
  organization: Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
– sequence: 4
  givenname: David E.
  surname: Crane
  fullname: Crane, David E.
  organization: Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
– sequence: 5
  givenname: Stephen J.
  surname: Payne
  fullname: Payne, Stephen J.
  organization: Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
– sequence: 6
  givenname: Michael A.
  surname: Chappell
  fullname: Chappell, Michael A.
  organization: Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24453108$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNU7Lb64BeQgC_6MG3-TsyjLLoWugpbreBLyCR3JHUmWZMZdL-9WbftQ0GfLtz7O4fLOSfoKKYICD2n5IwSws7HPJ4xSZR6hBZUMtYwqcURWhAlSMOpFsfopJQbQojWSjxBx0wIySl5s0Df1snDEOJ3bKPHLuUMbgop4tTjLg1zwT6ULeSy30Hf12vBIWK_i3YMDpe5ONhOoQtDmHbVIE7ZlgmvNxdP0ePeDgWe3c5T9OX9u8_LD83lp9XF8u1l44RuVQNAOSgQ4FqpPNO2s0xYToW2ihDP2l4DdL2Q1hGvnKOtBtFZ8D113HPBT9Grg-82p58zlMmMoT41DDZCmouhLROat4S0FX35AL1Jc471uz3FuJQH6sUtNXcjeLPNYbR5Z-5Sq8DrA-ByKiVDf49QYvaNmNqI-dtIZc8fsC5Mdh9xDSoM_1P8CgPs_m1t1pv1naI5KEKZ4Pe9wuYfplVcSfP148pcX2_0cnV1ZQT_AzM-rFw
CODEN MRMEEN
CitedBy_id crossref_primary_10_1007_s10334_021_00995_0
crossref_primary_10_1038_s41598_022_07000_1
crossref_primary_10_1002_mrm_26582
crossref_primary_10_1186_s13550_025_01209_7
crossref_primary_10_1002_mrm_25390
crossref_primary_10_1259_bjr_20150487
crossref_primary_10_1002_mrm_29826
crossref_primary_10_1002_mrm_25525
crossref_primary_10_1109_TMI_2019_2953901
crossref_primary_10_1118_1_4922708
crossref_primary_10_1002_mrm_28125
crossref_primary_10_1002_mrm_28422
crossref_primary_10_1016_j_mri_2021_08_008
crossref_primary_10_1016_j_media_2016_12_001
Cites_doi 10.1002/mrm.20759
10.1016/S1053-8119(03)00090-9
10.1002/mrm.23257
10.1007/s10406-006-0190-5
10.1098/rsfs.2012.0078
10.1002/mrm.22776
10.1002/jmri.23882
10.2214/AJR.12.9543
10.1002/mrm.20227
10.1016/j.pnmrs.2013.04.002
10.1161/01.RES.10.3.393
10.1002/mrm.22329
10.1161/01.RES.16.4.309
10.1002/mrm.20006
10.1148/radiol.2251011249
10.1097/00004647-199907000-00001
10.1002/(SICI)1522-2594(199902)41:2<343::AID-MRM19>3.0.CO;2-T
10.1002/mrm.21420
10.1002/mrm.1910360510
10.1002/jmri.20454
10.1038/jcbfm.2013.18
10.1002/mrm.1910140211
10.1038/jcbfm.2011.78
10.1016/j.neuroimage.2012.08.083
10.1097/00004647-199906000-00013
10.1002/jmri.20455
10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4
10.1002/mrm.10643
10.1002/jmri.21386
10.1097/00004647-200206000-00004
10.1002/mrm.20873
10.1109/TBME.2009.2013820
10.1148/radiology.193.3.7972800
10.1038/jcbfm.2010.4
10.1109/TSP.2008.2005752
10.1161/STROKEAHA.110.590786
10.1002/jmri.20535
10.1002/jmri.20505
10.1002/mrm.20802
10.1002/mrm.25056
10.1161/01.STR.31.5.1097
10.1161/01.STR.0000014208.05597.33
10.1097/00004647-199809000-00002
10.1002/mrm.20940
10.1002/mrm.24260
10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M
10.1016/j.neuroimage.2006.06.015
10.1002/mrm.10522
10.1002/jmri.20717
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.25077
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1774
ExternalDocumentID 3491262501
24453108
10_1002_mrm_25077
MRM25077
ark_67375_WNG_VVR9CGSS_4
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: WT088877/Z/09/Z
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c4967-ee13e7e4ec657d29aba24a3149a700d26f9eebf45ac0d7cc169e4baedf1c3d343
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 06:41:16 EDT 2025
Fri Jul 25 12:23:17 EDT 2025
Mon Jul 21 05:54:56 EDT 2025
Tue Jul 01 01:20:55 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Jan 22 16:56:04 EST 2025
Wed Oct 30 09:55:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords control point interpolation method
deconvolution
Bayesian Analysis
arterial input function
residue function
dispersion
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4967-ee13e7e4ec657d29aba24a3149a700d26f9eebf45ac0d7cc169e4baedf1c3d343
Notes istex:C74AB369A6C917377503D5724B75FA9CFEEDA17C
ArticleID:MRM25077
ark:/67375/WNG-VVR9CGSS-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25077
PMID 24453108
PQID 1622355006
PQPubID 1016391
PageCount 13
ParticipantIDs proquest_miscellaneous_1624936006
proquest_journals_1622355006
pubmed_primary_24453108
crossref_primary_10_1002_mrm_25077
crossref_citationtrail_10_1002_mrm_25077
wiley_primary_10_1002_mrm_25077_MRM25077
istex_primary_ark_67375_WNG_VVR9CGSS_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2014
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hudetz AG, Feher G, Weigle CG, Knuese DE, Kampine JP. Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension. Am J Physiol 1995;268:H2202-H2210.
Simonsen CZ, Rohl L, Vestergaard-poulsen P, Østergaard L. Final infarct size after acute stroke: prediction with flow. Radiology 2002;225:269-275.
Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003;50:1237-1247.
MacIntosh BJ, Sideso E, Donahue MJ, Chappell MA, Günther M, Handa A, Kennedy J, Jezzard P. Intracranial hemodynamics is altered by carotid artery disease and after endarterectomy: a dynamic magnetic resonance angiography study. Stroke 2011;42:979-984.
Vonken EP, Beekman FJ, Bakker CJ, Viergever MA. Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magn Reson Med 1999;41:343-350.
Zanderigo F, Bertoldo A, Pillonetto G, Cobelli Ast C. Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov. IEEE Trans Biomed Eng 2009;56:1287-1297.
Park CS, Payne SJ. A generalized mathematical framework for estimating the residue function for arbitrary vascular networks. Interface Focus 2013;3:20120078.
Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725.
Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50:164-174.
Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ. Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 2012;68:495-506.
Bonekamp D, Degaonkar M, Barker PB. Quantitative cerebral blood flow in dynamic susceptibility contrast MRI using total cerebral flow from phase contrast magnetic resonance angiography. Magn Reson Med 2011;66:57-66.
Christensen S, Calamante F, Hjort N, Wu O, Blankholm AD, Desmond P, Davis S, Ostergaard L. Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. J magn reson imaging 2008;27:1371-1381.
Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637-641.
Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962;10:393-407.
Ostergaard L, Jespersen SN, Mouridsen K, et al. The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab 2013;33:635-648.
Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise RJ, Hatazawa J, Herold S. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 1990;113:27-47.
Willats L, Christensen S, Ma HK, Donnan GA, Connelly A, Calamante F. Validating a local arterial input function method for improved perfusion quantification in stroke. J Cereb Blood Flow Metab 2011;31:2189-2198.
Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab2012:264-277.
Knutsson L, Larsson E-M, Thilmann O, Stahlberg F, Wirestam R. Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis. J Magn Reson Imaging 2006;23:444-453.
Van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 2001;45:477-485.
Zaharchuk G, Straka M, Marks MP, Albers GW, Moseley ME, Bammer R. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010;63:1548-1556.
Østergaard L, Johannsen P, Host-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C. Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [(15)O]H2O positron emission tomography in humans. J Cereb Blood Flow Metab 1998;18:935-940.
Calamante F, Morup M, Hansen LK. Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004;52:789-797.
Calamante F, Gadian DG, Connelly A. Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 2002;33:1146-1151.
Mehndiratta A, Macintosh BJ, Crane DE, Payne SJ, Chappell MA. A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI. Neuroimage 2013;64:560-570.
Calamante F, Willats L, Gadian DG, Connelly A. Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 2006;55:1180-1185.
Mehndiratta A, Calamante F, MacIntosh BJ, Crane DE, Payne SJ, Chappell MA. Modeling the residue function in DSC-MRI simulations: Analytical approximation to in vivo data. Magn Reson Med 2014;72:1486-1491.
Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 2007;58:1232-1241.
Gruner R, Bjornara BT, Moen G, Taxt T. Magnetic resonance brain perfusion imaging with voxel-specific arterial input functions. J Magn Reson Imaging 2006;23:273-284.
Willats L, Connelly A, Calamante F. Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 2006;56:146-156.
Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965;16:309-321.
Crane DE, Donahue MJ, Chappell MA, Sideso E, Handa A, Kennedy J, Jezzard P, Macintosh BJ. Evaluating quantitative approaches to dynamic susceptibility contrast MRI among carotid endarterectomy patients. J Magn Reson Imaging 2013;37:936-943.
Ostergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, Gyldensted C, Rosen BR. Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 2000;31:1097-1103.
Østergaard L, Chesler DA, Weisskoff RM, Sorensen AG, Rosen BR. Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 1999;19:690-699.
Calamante F, Yim PJ, Cebral JR. Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage 2003;19:341-353.
Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006;55:524-31.
Essig M. Protocol design for high relaxivity contrast agents in MR imaging of the CNS. Eur Radiol 2006;16(Suppl 7):M3-M7.
Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Fow Metab 1999;19:701-735.
Calamante F. Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 2005;22:718-722.
Calamante F. Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 2013;74:1-32.
Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S. Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 2006;33:570-579.
Tomita Y, Tomita M, Schiszler I, Amano T, Tanahashi N, Kobari M, Takeda H, Ohtomo M, Fukuuchi Y. Moment analysis of microflow histogram in focal ischemic lesion to evaluate microvascular derangement after small pial arterial occlusion in rats. J Cereb Blood Flow Metab 2002;22:663-669.
Duhamel G, Schlaug G, Alsop DC. Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results. Magn Reson Med 2006;55:514-23.
Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265.
Lorenz C, Benner T, Chen PJ, et al. Automated perfusion-weighted MRI using localized arterial input functions. J Magn Reson Imaging 2006;24:1133-1139.
Chappell MA, Groves AR, Whitcher B, Woolrich MW. Variational Bayesian inference for a nonlinear forward model. IEEE Trans Signal Process 2009;57:223-236.
Essig M, Shiroishi MS, Nguyen TB, et al. Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 2012;200:24-34.
Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000;44:466-473.
Van Osch MJP, van der Grond J, Bakker CJG. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. Journal of magnetic resonance imaging: J Magn Reson Imaging 2005;22:704-709.
Chappell MA, Woolrich MW, Kazan S, Jezzard P, Payne SJ, Macintosh BJ. Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements. Magn Reson Med 2013;69:563-570.
Smith MR, Lu H, Trochet S, Frayne R. Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn Reson Med 2004;51:631-634.
Bjornerud A, Emblem KE. A fully automated method for quantitative cer
2013; 3
2013; 69
2012; 200
1990; 14
2006; 33
2000; 44
2013; 64
1972
1999; 41
2003; 19
1996; 36
1965; 16
2003; 50
2001; 45
2005; 22
2010; 63
2009; 56
1998; 18
2009; 57
2006; 23
2006; 24
1999; 19
2008; 27
2002; 225
2011; 66
2012; 68
2010; 30
2012
2006; 56
1994; 193
2006; 55
2006; 16
2002; 33
2011; 31
2005
1962; 10
2003
2007; 58
2004; 52
2013; 37
2004; 51
2013; 33
2013; 74
2000; 31
2002; 22
2011; 42
1995; 268
2013
1990; 113
2014; 72
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Jacquez J (e_1_2_6_9_1) 1972
Calamante F (e_1_2_6_36_1) 2005
e_1_2_6_13_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
Hudetz AG (e_1_2_6_23_1) 1995; 268
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
(e_1_2_6_25_1) 2012
e_1_2_6_12_1
e_1_2_6_33_1
Leenders KL (e_1_2_6_42_1) 1990; 113
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Calamante F, Willats L, Gadian DG, Connelly A. Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 2006;55:1180-1185.
– reference: Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725.
– reference: Christensen S, Calamante F, Hjort N, Wu O, Blankholm AD, Desmond P, Davis S, Ostergaard L. Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. J magn reson imaging 2008;27:1371-1381.
– reference: Mehndiratta A, Calamante F, MacIntosh BJ, Crane DE, Payne SJ, Chappell MA. Modeling the residue function in DSC-MRI simulations: Analytical approximation to in vivo data. Magn Reson Med 2014;72:1486-1491.
– reference: Bonekamp D, Degaonkar M, Barker PB. Quantitative cerebral blood flow in dynamic susceptibility contrast MRI using total cerebral flow from phase contrast magnetic resonance angiography. Magn Reson Med 2011;66:57-66.
– reference: Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ. Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 2012;68:495-506.
– reference: Park CS, Payne SJ. A generalized mathematical framework for estimating the residue function for arbitrary vascular networks. Interface Focus 2013;3:20120078.
– reference: Lorenz C, Benner T, Chen PJ, et al. Automated perfusion-weighted MRI using localized arterial input functions. J Magn Reson Imaging 2006;24:1133-1139.
– reference: Essig M. Protocol design for high relaxivity contrast agents in MR imaging of the CNS. Eur Radiol 2006;16(Suppl 7):M3-M7.
– reference: Tomita Y, Tomita M, Schiszler I, Amano T, Tanahashi N, Kobari M, Takeda H, Ohtomo M, Fukuuchi Y. Moment analysis of microflow histogram in focal ischemic lesion to evaluate microvascular derangement after small pial arterial occlusion in rats. J Cereb Blood Flow Metab 2002;22:663-669.
– reference: Willats L, Connelly A, Calamante F. Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 2006;56:146-156.
– reference: Zaharchuk G, Straka M, Marks MP, Albers GW, Moseley ME, Bammer R. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010;63:1548-1556.
– reference: Jacquez J. Compartmental analysis in biology and medicine: kinetics of distribution of tracer-labeled materials. Amsterdam: Elsevier; 1972.
– reference: Zanderigo F, Bertoldo A, Pillonetto G, Cobelli Ast C. Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov. IEEE Trans Biomed Eng 2009;56:1287-1297.
– reference: Crane DE, Donahue MJ, Chappell MA, Sideso E, Handa A, Kennedy J, Jezzard P, Macintosh BJ. Evaluating quantitative approaches to dynamic susceptibility contrast MRI among carotid endarterectomy patients. J Magn Reson Imaging 2013;37:936-943.
– reference: Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000;44:466-473.
– reference: Mehndiratta A, Macintosh BJ, Crane DE, Payne SJ, Chappell MA. A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI. Neuroimage 2013;64:560-570.
– reference: MacIntosh BJ, Sideso E, Donahue MJ, Chappell MA, Günther M, Handa A, Kennedy J, Jezzard P. Intracranial hemodynamics is altered by carotid artery disease and after endarterectomy: a dynamic magnetic resonance angiography study. Stroke 2011;42:979-984.
– reference: Østergaard L, Johannsen P, Host-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C. Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [(15)O]H2O positron emission tomography in humans. J Cereb Blood Flow Metab 1998;18:935-940.
– reference: Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50:164-174.
– reference: Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003;50:1237-1247.
– reference: Gruner R, Bjornara BT, Moen G, Taxt T. Magnetic resonance brain perfusion imaging with voxel-specific arterial input functions. J Magn Reson Imaging 2006;23:273-284.
– reference: Van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 2001;45:477-485.
– reference: Knutsson L, Larsson E-M, Thilmann O, Stahlberg F, Wirestam R. Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis. J Magn Reson Imaging 2006;23:444-453.
– reference: Chappell MA, Groves AR, Whitcher B, Woolrich MW. Variational Bayesian inference for a nonlinear forward model. IEEE Trans Signal Process 2009;57:223-236.
– reference: Essig M, Shiroishi MS, Nguyen TB, et al. Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 2012;200:24-34.
– reference: Calamante F, Gadian DG, Connelly A. Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 2002;33:1146-1151.
– reference: Van Osch MJP, van der Grond J, Bakker CJG. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. Journal of magnetic resonance imaging: J Magn Reson Imaging 2005;22:704-709.
– reference: Østergaard L, Chesler DA, Weisskoff RM, Sorensen AG, Rosen BR. Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 1999;19:690-699.
– reference: Simonsen CZ, Rohl L, Vestergaard-poulsen P, Østergaard L. Final infarct size after acute stroke: prediction with flow. Radiology 2002;225:269-275.
– reference: Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006;55:524-31.
– reference: Vonken EP, Beekman FJ, Bakker CJ, Viergever MA. Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magn Reson Med 1999;41:343-350.
– reference: Ostergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, Gyldensted C, Rosen BR. Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 2000;31:1097-1103.
– reference: Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965;16:309-321.
– reference: Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962;10:393-407.
– reference: Duhamel G, Schlaug G, Alsop DC. Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results. Magn Reson Med 2006;55:514-23.
– reference: Calamante F. Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 2013;74:1-32.
– reference: Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 2007;58:1232-1241.
– reference: Calamante F, Morup M, Hansen LK. Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004;52:789-797.
– reference: Ostergaard L, Jespersen SN, Mouridsen K, et al. The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab 2013;33:635-648.
– reference: Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab2012:264-277.
– reference: Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637-641.
– reference: Calamante F, Yim PJ, Cebral JR. Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage 2003;19:341-353.
– reference: Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Fow Metab 1999;19:701-735.
– reference: Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265.
– reference: Smith MR, Lu H, Trochet S, Frayne R. Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn Reson Med 2004;51:631-634.
– reference: Calamante F. Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 2005;22:718-722.
– reference: Bjornerud A, Emblem KE. A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. J Cereb Blood Flow Metab 2010;30:1066-1078.
– reference: Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise RJ, Hatazawa J, Herold S. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 1990;113:27-47.
– reference: Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S. Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 2006;33:570-579.
– reference: Willats L, Christensen S, Ma HK, Donnan GA, Connelly A, Calamante F. Validating a local arterial input function method for improved perfusion quantification in stroke. J Cereb Blood Flow Metab 2011;31:2189-2198.
– reference: Chappell MA, Woolrich MW, Kazan S, Jezzard P, Payne SJ, Macintosh BJ. Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements. Magn Reson Med 2013;69:563-570.
– reference: Hudetz AG, Feher G, Weigle CG, Knuese DE, Kampine JP. Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension. Am J Physiol 1995;268:H2202-H2210.
– volume: 37
  start-page: 936
  year: 2013
  end-page: 943
  article-title: Evaluating quantitative approaches to dynamic susceptibility contrast MRI among carotid endarterectomy patients
  publication-title: J Magn Reson Imaging
– volume: 19
  start-page: 690
  year: 1999
  end-page: 699
  article-title: Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data
  publication-title: J Cereb Blood Flow Metab
– volume: 50
  start-page: 164
  year: 2003
  end-page: 174
  article-title: Tracer arrival timing‐insensitive technique for estimating flow in MR perfusion‐weighted imaging using singular value decomposition with a block‐circulant deconvolution matrix
  publication-title: Magn Reson Med
– volume: 14
  start-page: 249
  year: 1990
  end-page: 265
  article-title: Perfusion imaging with NMR contrast agents
  publication-title: Magn Reson Med
– volume: 10
  start-page: 393
  year: 1962
  end-page: 407
  article-title: Theoretical basis of indicator‐dilution methods for measuring flow and volume
  publication-title: Circ Res
– volume: 52
  start-page: 789
  year: 2004
  end-page: 797
  article-title: Defining a local arterial input function for perfusion MRI using independent component analysis
  publication-title: Magn Reson Med
– volume: 55
  start-page: 524
  year: 2006
  end-page: 31
  article-title: Automatic selection of arterial input function using cluster analysis
  publication-title: Magn Reson Med
– volume: 200
  start-page: 24
  year: 2012
  end-page: 34
  article-title: Perfusion MRI: the five most frequently asked technical questions
  publication-title: AJR Am J Roentgenol
– volume: 33
  start-page: 570
  year: 2006
  end-page: 579
  article-title: Bayesian estimation of cerebral perfusion using a physiological model of microvasculature
  publication-title: Neuroimage
– volume: 22
  start-page: 718
  year: 2005
  end-page: 722
  article-title: Bolus dispersion issues related to the quantification of perfusion MRI data
  publication-title: J Magn Reson Imaging
– volume: 42
  start-page: 979
  year: 2011
  end-page: 984
  article-title: Intracranial hemodynamics is altered by carotid artery disease and after endarterectomy: a dynamic magnetic resonance angiography study
  publication-title: Stroke
– volume: 24
  start-page: 1133
  year: 2006
  end-page: 1139
  article-title: Automated perfusion‐weighted MRI using localized arterial input functions
  publication-title: J Magn Reson Imaging
– volume: 23
  start-page: 444
  year: 2006
  end-page: 453
  article-title: Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis
  publication-title: J Magn Reson Imaging
– volume: 33
  start-page: 1146
  year: 2002
  end-page: 1151
  article-title: Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use
  publication-title: Stroke
– volume: 68
  start-page: 495
  year: 2012
  end-page: 506
  article-title: Correction for arterial‐tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging
  publication-title: Magn Reson Med
– volume: 23
  start-page: 273
  year: 2006
  end-page: 284
  article-title: Magnetic resonance brain perfusion imaging with voxel‐specific arterial input functions
  publication-title: J Magn Reson Imaging
– volume: 74
  start-page: 1
  year: 2013
  end-page: 32
  article-title: Arterial input function in perfusion MRI: a comprehensive review
  publication-title: Prog Nucl Magn Reson Spectrosc
– volume: 268
  start-page: H2202
  year: 1995
  end-page: H2210
  article-title: Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension
  publication-title: Am J Physiol
– volume: 72
  start-page: 1486
  year: 2014
  end-page: 1491
  article-title: Modeling the residue function in DSC‐MRI simulations: Analytical approximation to in vivo data
  publication-title: Magn Reson Med
– volume: 66
  start-page: 57
  year: 2011
  end-page: 66
  article-title: Quantitative cerebral blood flow in dynamic susceptibility contrast MRI using total cerebral flow from phase contrast magnetic resonance angiography
  publication-title: Magn Reson Med
– year: 1972
– volume: 56
  start-page: 146
  year: 2006
  end-page: 156
  article-title: Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion
  publication-title: Magn Reson Med
– volume: 41
  start-page: 343
  year: 1999
  end-page: 350
  article-title: Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI
  publication-title: Magn Reson Med
– volume: 50
  start-page: 1237
  year: 2003
  end-page: 1247
  article-title: Quantification of bolus‐tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization
  publication-title: Magn Reson Med
– volume: 58
  start-page: 1232
  year: 2007
  end-page: 1241
  article-title: Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age‐ and gender‐dependence with fully automatic image postprocessing algorithm
  publication-title: Magn Reson Med
– volume: 56
  start-page: 1287
  year: 2009
  end-page: 1297
  article-title: Nonlinear stochastic regularization to characterize tissue residue function in bolus‐tracking MRI: assessment and comparison with SVD, block‐circulant SVD, and Tikhonov
  publication-title: IEEE Trans Biomed Eng
– volume: 30
  start-page: 1066
  year: 2010
  end-page: 1078
  article-title: A fully automated method for quantitative cerebral hemodynamic analysis using DSC‐MRI
  publication-title: J Cereb Blood Flow Metab
– volume: 3
  start-page: 20120078
  year: 2013
  article-title: A generalized mathematical framework for estimating the residue function for arbitrary vascular networks
  publication-title: Interface Focus
– volume: 55
  start-page: 514
  year: 2006
  end-page: 23
  article-title: Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results
  publication-title: Magn Reson Med
– volume: 19
  start-page: 341
  year: 2003
  end-page: 353
  article-title: Estimation of bolus dispersion effects in perfusion MRI using image‐based computational fluid dynamics
  publication-title: Neuroimage
– volume: 19
  start-page: 701
  year: 1999
  end-page: 735
  article-title: Measuring cerebral blood flow using magnetic resonance imaging techniques
  publication-title: J Cereb Blood Fow Metab
– volume: 57
  start-page: 223
  year: 2009
  end-page: 236
  article-title: Variational Bayesian inference for a nonlinear forward model
  publication-title: IEEE Trans Signal Process
– volume: 64
  start-page: 560
  year: 2013
  end-page: 570
  article-title: A control point interpolation method for the non‐parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI
  publication-title: Neuroimage
– volume: 63
  start-page: 1548
  year: 2010
  end-page: 1556
  article-title: Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow
  publication-title: Magn Reson Med
– volume: 22
  start-page: 663
  year: 2002
  end-page: 669
  article-title: Moment analysis of microflow histogram in focal ischemic lesion to evaluate microvascular derangement after small pial arterial occlusion in rats
  publication-title: J Cereb Blood Flow Metab
– volume: 31
  start-page: 2189
  year: 2011
  end-page: 2198
  article-title: Validating a local arterial input function method for improved perfusion quantification in stroke
  publication-title: J Cereb Blood Flow Metab
– volume: 55
  start-page: 1180
  year: 2006
  end-page: 1185
  article-title: Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke
  publication-title: Magn Reson Med
– volume: 16
  start-page: 309
  year: 1965
  end-page: 321
  article-title: Equations for measuring blood flow by external monitoring of radioisotopes
  publication-title: Circ Res
– year: 2003
– volume: 18
  start-page: 935
  year: 1998
  end-page: 940
  article-title: Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [(15)O]H2O positron emission tomography in humans
  publication-title: J Cereb Blood Flow Metab
– volume: 69
  start-page: 563
  year: 2013
  end-page: 570
  article-title: Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements
  publication-title: Magn Reson Med
– start-page: 264
  year: 2012
  end-page: 277
  article-title: Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism
  publication-title: J Cereb Blood Flow Metab
– volume: 36
  start-page: 715
  year: 1996
  end-page: 725
  article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages
  publication-title: Part I. Mathematical approach and statistical analysis. Magn Reson Med
– volume: 22
  start-page: 704
  year: 2005
  end-page: 709
  article-title: Partial volume effects on arterial input functions: shape and amplitude distortions and their correction
  publication-title: Journal of magnetic resonance imaging: J Magn Reson Imaging
– volume: 33
  start-page: 635
  year: 2013
  end-page: 648
  article-title: The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model
  publication-title: J Cereb Blood Flow Metab
– volume: 31
  start-page: 1097
  year: 2000
  end-page: 1103
  article-title: Combined diffusion‐weighted and perfusion‐weighted flow heterogeneity magnetic resonance imaging in acute stroke
  publication-title: Stroke
– volume: 51
  start-page: 631
  year: 2004
  end-page: 634
  article-title: Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies
  publication-title: Magn Reson Med
– volume: 44
  start-page: 466
  year: 2000
  end-page: 473
  article-title: Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition
  publication-title: Magn Reson Med
– start-page: 141
  year: 2005
  end-page: 160
– volume: 113
  start-page: 27
  year: 1990
  end-page: 47
  article-title: Cerebral blood flow, blood volume and oxygen utilization
  publication-title: Normal values and effect of age. Brain
– volume: 45
  start-page: 477
  year: 2001
  end-page: 485
  article-title: Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI
  publication-title: Magn Reson Med
– volume: 16
  start-page: M3
  issue: Suppl 7
  year: 2006
  end-page: M7
  article-title: Protocol design for high relaxivity contrast agents in MR imaging of the CNS
  publication-title: Eur Radiol
– volume: 225
  start-page: 269
  year: 2002
  end-page: 275
  article-title: Final infarct size after acute stroke: prediction with flow
  publication-title: Radiology
– volume: 27
  start-page: 1371
  year: 2008
  end-page: 1381
  article-title: Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI
  publication-title: J magn reson imaging
– volume: 193
  start-page: 637
  year: 1994
  end-page: 641
  article-title: Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast‐enhanced MR imaging
  publication-title: Radiology
– year: 2013
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.20759
– ident: e_1_2_6_37_1
  doi: 10.1016/S1053-8119(03)00090-9
– ident: e_1_2_6_29_1
– ident: e_1_2_6_51_1
  doi: 10.1002/mrm.23257
– ident: e_1_2_6_2_1
  doi: 10.1007/s10406-006-0190-5
– ident: e_1_2_6_46_1
  doi: 10.1098/rsfs.2012.0078
– ident: e_1_2_6_48_1
  doi: 10.1002/mrm.22776
– ident: e_1_2_6_53_1
– ident: e_1_2_6_28_1
– ident: e_1_2_6_45_1
  doi: 10.1002/jmri.23882
– ident: e_1_2_6_3_1
  doi: 10.2214/AJR.12.9543
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.20227
– ident: e_1_2_6_17_1
  doi: 10.1016/j.pnmrs.2013.04.002
– volume: 268
  start-page: H2202
  year: 1995
  ident: e_1_2_6_23_1
  article-title: Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension
  publication-title: Am J Physiol
– ident: e_1_2_6_8_1
  doi: 10.1161/01.RES.10.3.393
– ident: e_1_2_6_50_1
  doi: 10.1002/mrm.22329
– ident: e_1_2_6_7_1
  doi: 10.1161/01.RES.16.4.309
– ident: e_1_2_6_34_1
  doi: 10.1002/mrm.20006
– ident: e_1_2_6_22_1
  doi: 10.1148/radiol.2251011249
– ident: e_1_2_6_38_1
  doi: 10.1097/00004647-199907000-00001
– ident: e_1_2_6_31_1
  doi: 10.1002/(SICI)1522-2594(199902)41:2<343::AID-MRM19>3.0.CO;2-T
– ident: e_1_2_6_49_1
  doi: 10.1002/mrm.21420
– ident: e_1_2_6_4_1
  doi: 10.1002/mrm.1910360510
– ident: e_1_2_6_41_1
  doi: 10.1002/jmri.20454
– ident: e_1_2_6_26_1
  doi: 10.1038/jcbfm.2013.18
– ident: e_1_2_6_5_1
  doi: 10.1002/mrm.1910140211
– ident: e_1_2_6_54_1
  doi: 10.1038/jcbfm.2011.78
– ident: e_1_2_6_27_1
  doi: 10.1016/j.neuroimage.2012.08.083
– ident: e_1_2_6_10_1
  doi: 10.1097/00004647-199906000-00013
– volume: 113
  start-page: 27
  year: 1990
  ident: e_1_2_6_42_1
  article-title: Cerebral blood flow, blood volume and oxygen utilization
  publication-title: Normal values and effect of age. Brain
– ident: e_1_2_6_13_1
  doi: 10.1002/jmri.20455
– ident: e_1_2_6_14_1
  doi: 10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4
– ident: e_1_2_6_43_1
  doi: 10.1002/mrm.10643
– ident: e_1_2_6_59_1
  doi: 10.1002/jmri.21386
– ident: e_1_2_6_24_1
  doi: 10.1097/00004647-200206000-00004
– ident: e_1_2_6_47_1
  doi: 10.1002/mrm.20873
– ident: e_1_2_6_33_1
  doi: 10.1109/TBME.2009.2013820
– start-page: 141
  volume-title: Clinical MR neuroimaging: diffusion, perfusion and spectroscopy
  year: 2005
  ident: e_1_2_6_36_1
– ident: e_1_2_6_6_1
  doi: 10.1148/radiology.193.3.7972800
– ident: e_1_2_6_12_1
  doi: 10.1038/jcbfm.2010.4
– ident: e_1_2_6_40_1
  doi: 10.1109/TSP.2008.2005752
– ident: e_1_2_6_52_1
– ident: e_1_2_6_44_1
  doi: 10.1161/STROKEAHA.110.590786
– ident: e_1_2_6_57_1
  doi: 10.1002/jmri.20535
– ident: e_1_2_6_58_1
  doi: 10.1002/jmri.20505
– volume-title: Compartmental analysis in biology and medicine: kinetics of distribution of tracer‐labeled materials
  year: 1972
  ident: e_1_2_6_9_1
– ident: e_1_2_6_55_1
  doi: 10.1002/mrm.20802
– ident: e_1_2_6_30_1
  doi: 10.1002/mrm.25056
– start-page: 264
  year: 2012
  ident: e_1_2_6_25_1
  article-title: Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism
  publication-title: J Cereb Blood Flow Metab
– ident: e_1_2_6_21_1
  doi: 10.1161/01.STR.31.5.1097
– ident: e_1_2_6_15_1
  doi: 10.1161/01.STR.0000014208.05597.33
– ident: e_1_2_6_19_1
  doi: 10.1097/00004647-199809000-00002
– ident: e_1_2_6_35_1
  doi: 10.1002/mrm.20940
– ident: e_1_2_6_39_1
  doi: 10.1002/mrm.24260
– ident: e_1_2_6_20_1
  doi: 10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M
– ident: e_1_2_6_32_1
  doi: 10.1016/j.neuroimage.2006.06.015
– ident: e_1_2_6_11_1
  doi: 10.1002/mrm.10522
– ident: e_1_2_6_56_1
  doi: 10.1002/jmri.20717
SSID ssj0009974
Score 2.2207785
Snippet Purpose Bolus dispersion in DSC‐MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis....
Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However,...
Purpose Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1762
SubjectTerms Adult
Aged
Algorithms
arterial input function
Bayesian Analysis
Carotid Arteries - metabolism
Carotid Arteries - pathology
Carotid Stenosis - metabolism
Carotid Stenosis - pathology
Computer Simulation
Contrast Media - pharmacokinetics
control point interpolation method
deconvolution
dispersion
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Angiography - methods
Male
Metabolic Clearance Rate
Models, Cardiovascular
Reproducibility of Results
residue function
Sensitivity and Specificity
Tissue Distribution
Title Modeling and correction of bolus dispersion effects in dynamic susceptibility contrast MRI
URI https://api.istex.fr/ark:/67375/WNG-VVR9CGSS-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25077
https://www.ncbi.nlm.nih.gov/pubmed/24453108
https://www.proquest.com/docview/1622355006
https://www.proquest.com/docview/1624936006
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEB5KRfHFS72dWiWKiC97mt3NJht8kmpbhe3Dqa1FhJDbQqndU86eA-qvd5K9lEoF8W1hZ9lcZiZfkplvAF45bkWROppIXNwThpA90egTk9rmrs5sWQsacoerA75_xD6dFCdr8HbIhen4IcYDt2AZ0V8HA9em3b4kDT1fnE9x_RYhkzzNeeDNfz-7pI6SsmNgFiz4GckGViGabY9fXlmLboRh_XEd0LyKW-PCs3sXvg1N7uJNzqarpZnaX3-wOf5nn-7BnR6QknedBt2HNd9swK2qv3LfgJsxRtS2D-BrqJsWsteJbhyxoaxHTIog85oY1OCWuNPAOx7O30gfJ0JOG-K6ovekXbUxhiaG4_4kMUhet0tSzT4-hKPdD5939pO-NENimUTX6n2ae-GZt7wQLpPa6IzpHLdbWlDqMl5L703NCm2pE9amXHpmtHd1ikqQs_wRrDfzxj8BohEDSVm7vOSSISAsU8tNKQSVzrDC0Am8GSZJ2Z63PJTP-K46xuVM4aipOGoTeDmKXnRkHdcJvY4zPUroxVmIbhOF-nKwp46PZ3Jn7_BQsQlsDaqgesNuVcoRT-GujvIJvBhfo0mGexbd-PkqyjCZ8yjzuFOh8WeIptDr0RJ7FRXh7-1U1ayKD5v_LvoUbiOgY124zRasLxcr_wxB09I8j9bxG4QBEdA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVhwvHOVaKGAQQrxk6ySOHUu8oEK7hWYftqeQkOXYjlSVZtFmVwJ-PWMnm6qoSIi3SJkoPub4bI-_AXhtuRFZbGkkMbhHDCF7pNEnRpVJbZWYvBLU3x0uxnx0yD6dZCcr8G55F6blh-g33LxlBH_tDdxvSG9esIaez86HGMCFuAZrDIGGX3p9mFyQR0nZcjAL5j2NZEteIZps9p9eikZrfmB_XAU1LyPXEHq278DXZaPbjJOz4WJeDs2vP_gc_7dXd-F2h0nJ-1aJ7sGKq9fhRtGduq_D9ZAmapr78MWXTvMX2ImuLTG-ske4F0GmFSlRiRtiTz31uN-CI12qCDmtiW3r3pNm0YQ0mpCR-5OEPHndzEkx2X0Ah9sfD7ZGUVedITJMond1Lk6dcMwZngmbSF3qhOkUV1xaUGoTXknnyopl2lArjIm5dKzUzlYx6kHK0oewWk9r9xiIRhgkZWXTnEuGmDCPDS9zIai0JctKOoC3y1lSpqMu9xU0vqmWdDlROGoqjNoAXvWi31u-jquE3oSp7iX07MwnuIlMHY931NHRRG7t7O8rNoCNpS6ozrYbFXOEVLiwo3wAL_vXaJX-qEXXbroIMkymPMg8anWo_xkCKnR8NMdeBU34eztVMSnCw5N_F30BN0cHxZ7a2x1_fgq3EN-xNvtmA1bns4V7hhhqXj4PpvIbm4AV7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFosvXupttWoUEV9mm5nJJBt8kuq2VWeRrb0gQsgkGSi1s2VnF9Rf70nmUioVxLeBOcPkci5fkpPvALy03IgstjSSGNwjhpA90ugTo9KktkzMqBTU3x3OJ3z3gH04zo5X4E13F6bhh-g33LxlBH_tDfzcllsXpKFn87Mhxm8hrsEa44gkPCKaXnBHSdlQMAvmHY1kHa0QTbb6Ty8FozU_rj-uQpqXgWuIPONb8K1rc5NwcjpcLoqh-fUHneN_duo23GwRKXnbqNAdWHHVBqzn7Zn7BlwPSaKmvgtffeE0f32d6MoS4-t6hFsRZFaSAlW4JvbEE4_7DTjSJoqQk4rYpuo9qZd1SKIJ-bg_SciS1_WC5NO9e3Awfv9lezdqazNEhkn0rc7FqROOOcMzYROpC50wneJ6SwtKbcJL6VxRskwbaoUxMZeOFdrZMkYtSFl6H1arWeUeAtEIgqQsbTrikuE8jmLDi5EQVNqCZQUdwOtukpRpict9_YzvqqFcThSOmgqjNoAXveh5w9ZxldCrMNO9hJ6f-vQ2kamjyY46PJzK7Z39fcUGsNmpgmotu1YxR0CFyzrKB_C8f4026Q9adOVmyyDDZMqDzINGhfqfIZxCt0dH2KugCH9vp8qneXh49O-iz2D987ux-rQ3-fgYbiC4Y03qzSasLuZL9wQB1KJ4GgzlN0w_FJ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+correction+of+bolus+dispersion+effects+in+dynamic+susceptibility+contrast+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Mehndiratta%2C+Amit&rft.au=Calamante%2C+Fernando&rft.au=MacIntosh%2C+Bradley+J&rft.au=Crane%2C+David+E&rft.date=2014-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=72&rft.issue=6&rft.spage=1762&rft_id=info:doi/10.1002%2Fmrm.25077&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon