Modeling and correction of bolus dispersion effects in dynamic susceptibility contrast MRI
Purpose Bolus dispersion in DSC‐MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation...
Saved in:
Published in | Magnetic resonance in medicine Vol. 72; no. 6; pp. 1762 - 1774 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.12.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.25077 |
Cover
Loading…
Abstract | Purpose
Bolus dispersion in DSC‐MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function.
Methods
VM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease.
Results
Simulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio = 0.57–0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low‐to‐medium dispersion; CBFratio = 0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations.
Conclusion
In patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method. Magn Reson Med 72:1762–1774, 2014. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | Purpose Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function. Methods VM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease. Results Simulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio=0.57-0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low-to-medium dispersion; CBFratio=0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations. Conclusion In patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method. Magn Reson Med 72:1762-1774, 2014. © 2014 Wiley Periodicals, Inc. Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function.PURPOSEBolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function.VM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease.METHODSVM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease.Simulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio = 0.57-0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low-to-medium dispersion; CBFratio = 0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations.RESULTSSimulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio = 0.57-0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low-to-medium dispersion; CBFratio = 0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations.In patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method.CONCLUSIONIn patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method. Purpose Bolus dispersion in DSC‐MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function. Methods VM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease. Results Simulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio = 0.57–0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low‐to‐medium dispersion; CBFratio = 0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations. Conclusion In patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method. Magn Reson Med 72:1762–1774, 2014. © 2014 Wiley Periodicals, Inc. Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function. VM and CPI were extended to correct for dispersion by means of a vascular transport function. Simulations were performed at multiple dispersion levels and an in vivo analysis was performed on a healthy subject and two patients with carotid atherosclerotic disease. Simulations showed that methods that could not address dispersion tended to underestimate CBF (ratio in CBF estimation, CBFratio = 0.57-0.77) in the presence of dispersion; whereas modified CPI showed the best performance at low-to-medium dispersion; CBFratio = 0.99 and 0.81, respectively. The in vivo data showed trends in CBF estimation and residue function that were consistent with the predictions from simulations. In patients with atherosclerotic disease the estimated residue function showed considerable differences in the ipsilateral hemisphere. These differences could partly be attributed to dispersive effects arising from the stenosis when dispersion corrected CPI was used. It is thus beneficial to correct for dispersion in perfusion analysis using this method. |
Author | Crane, David E. Mehndiratta, Amit Payne, Stephen J. Chappell, Michael A. Calamante, Fernando MacIntosh, Bradley J. |
Author_xml | – sequence: 1 givenname: Amit surname: Mehndiratta fullname: Mehndiratta, Amit email: amit.mehndiratta@keble.ox.ac.uk organization: Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom – sequence: 2 givenname: Fernando surname: Calamante fullname: Calamante, Fernando organization: Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia – sequence: 3 givenname: Bradley J. surname: MacIntosh fullname: MacIntosh, Bradley J. organization: Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, Canada – sequence: 4 givenname: David E. surname: Crane fullname: Crane, David E. organization: Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, Canada – sequence: 5 givenname: Stephen J. surname: Payne fullname: Payne, Stephen J. organization: Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom – sequence: 6 givenname: Michael A. surname: Chappell fullname: Chappell, Michael A. organization: Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24453108$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9rFDEUxYNU7Lb64BeQgC_6MG3-TsyjLLoWugpbreBLyCR3JHUmWZMZdL-9WbftQ0GfLtz7O4fLOSfoKKYICD2n5IwSws7HPJ4xSZR6hBZUMtYwqcURWhAlSMOpFsfopJQbQojWSjxBx0wIySl5s0Df1snDEOJ3bKPHLuUMbgop4tTjLg1zwT6ULeSy30Hf12vBIWK_i3YMDpe5ONhOoQtDmHbVIE7ZlgmvNxdP0ePeDgWe3c5T9OX9u8_LD83lp9XF8u1l44RuVQNAOSgQ4FqpPNO2s0xYToW2ihDP2l4DdL2Q1hGvnKOtBtFZ8D113HPBT9Grg-82p58zlMmMoT41DDZCmouhLROat4S0FX35AL1Jc471uz3FuJQH6sUtNXcjeLPNYbR5Z-5Sq8DrA-ByKiVDf49QYvaNmNqI-dtIZc8fsC5Mdh9xDSoM_1P8CgPs_m1t1pv1naI5KEKZ4Pe9wuYfplVcSfP148pcX2_0cnV1ZQT_AzM-rFw |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1007_s10334_021_00995_0 crossref_primary_10_1038_s41598_022_07000_1 crossref_primary_10_1002_mrm_26582 crossref_primary_10_1186_s13550_025_01209_7 crossref_primary_10_1002_mrm_25390 crossref_primary_10_1259_bjr_20150487 crossref_primary_10_1002_mrm_29826 crossref_primary_10_1002_mrm_25525 crossref_primary_10_1109_TMI_2019_2953901 crossref_primary_10_1118_1_4922708 crossref_primary_10_1002_mrm_28125 crossref_primary_10_1002_mrm_28422 crossref_primary_10_1016_j_mri_2021_08_008 crossref_primary_10_1016_j_media_2016_12_001 |
Cites_doi | 10.1002/mrm.20759 10.1016/S1053-8119(03)00090-9 10.1002/mrm.23257 10.1007/s10406-006-0190-5 10.1098/rsfs.2012.0078 10.1002/mrm.22776 10.1002/jmri.23882 10.2214/AJR.12.9543 10.1002/mrm.20227 10.1016/j.pnmrs.2013.04.002 10.1161/01.RES.10.3.393 10.1002/mrm.22329 10.1161/01.RES.16.4.309 10.1002/mrm.20006 10.1148/radiol.2251011249 10.1097/00004647-199907000-00001 10.1002/(SICI)1522-2594(199902)41:2<343::AID-MRM19>3.0.CO;2-T 10.1002/mrm.21420 10.1002/mrm.1910360510 10.1002/jmri.20454 10.1038/jcbfm.2013.18 10.1002/mrm.1910140211 10.1038/jcbfm.2011.78 10.1016/j.neuroimage.2012.08.083 10.1097/00004647-199906000-00013 10.1002/jmri.20455 10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4 10.1002/mrm.10643 10.1002/jmri.21386 10.1097/00004647-200206000-00004 10.1002/mrm.20873 10.1109/TBME.2009.2013820 10.1148/radiology.193.3.7972800 10.1038/jcbfm.2010.4 10.1109/TSP.2008.2005752 10.1161/STROKEAHA.110.590786 10.1002/jmri.20535 10.1002/jmri.20505 10.1002/mrm.20802 10.1002/mrm.25056 10.1161/01.STR.31.5.1097 10.1161/01.STR.0000014208.05597.33 10.1097/00004647-199809000-00002 10.1002/mrm.20940 10.1002/mrm.24260 10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M 10.1016/j.neuroimage.2006.06.015 10.1002/mrm.10522 10.1002/jmri.20717 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.25077 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1774 |
ExternalDocumentID | 3491262501 24453108 10_1002_mrm_25077 MRM25077 ark_67375_WNG_VVR9CGSS_4 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: WT088877/Z/09/Z |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c4967-ee13e7e4ec657d29aba24a3149a700d26f9eebf45ac0d7cc169e4baedf1c3d343 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 06:41:16 EDT 2025 Fri Jul 25 12:23:17 EDT 2025 Mon Jul 21 05:54:56 EDT 2025 Tue Jul 01 01:20:55 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Wed Jan 22 16:56:04 EST 2025 Wed Oct 30 09:55:33 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | control point interpolation method deconvolution Bayesian Analysis arterial input function residue function dispersion |
Language | English |
License | 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4967-ee13e7e4ec657d29aba24a3149a700d26f9eebf45ac0d7cc169e4baedf1c3d343 |
Notes | istex:C74AB369A6C917377503D5724B75FA9CFEEDA17C ArticleID:MRM25077 ark:/67375/WNG-VVR9CGSS-4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25077 |
PMID | 24453108 |
PQID | 1622355006 |
PQPubID | 1016391 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1624936006 proquest_journals_1622355006 pubmed_primary_24453108 crossref_primary_10_1002_mrm_25077 crossref_citationtrail_10_1002_mrm_25077 wiley_primary_10_1002_mrm_25077_MRM25077 istex_primary_ark_67375_WNG_VVR9CGSS_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2014 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: December 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Hudetz AG, Feher G, Weigle CG, Knuese DE, Kampine JP. Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension. Am J Physiol 1995;268:H2202-H2210. Simonsen CZ, Rohl L, Vestergaard-poulsen P, Østergaard L. Final infarct size after acute stroke: prediction with flow. Radiology 2002;225:269-275. Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003;50:1237-1247. MacIntosh BJ, Sideso E, Donahue MJ, Chappell MA, Günther M, Handa A, Kennedy J, Jezzard P. Intracranial hemodynamics is altered by carotid artery disease and after endarterectomy: a dynamic magnetic resonance angiography study. Stroke 2011;42:979-984. Vonken EP, Beekman FJ, Bakker CJ, Viergever MA. Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magn Reson Med 1999;41:343-350. Zanderigo F, Bertoldo A, Pillonetto G, Cobelli Ast C. Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov. IEEE Trans Biomed Eng 2009;56:1287-1297. Park CS, Payne SJ. A generalized mathematical framework for estimating the residue function for arbitrary vascular networks. Interface Focus 2013;3:20120078. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725. Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50:164-174. Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ. Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 2012;68:495-506. Bonekamp D, Degaonkar M, Barker PB. Quantitative cerebral blood flow in dynamic susceptibility contrast MRI using total cerebral flow from phase contrast magnetic resonance angiography. Magn Reson Med 2011;66:57-66. Christensen S, Calamante F, Hjort N, Wu O, Blankholm AD, Desmond P, Davis S, Ostergaard L. Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. J magn reson imaging 2008;27:1371-1381. Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637-641. Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962;10:393-407. Ostergaard L, Jespersen SN, Mouridsen K, et al. The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab 2013;33:635-648. Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise RJ, Hatazawa J, Herold S. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 1990;113:27-47. Willats L, Christensen S, Ma HK, Donnan GA, Connelly A, Calamante F. Validating a local arterial input function method for improved perfusion quantification in stroke. J Cereb Blood Flow Metab 2011;31:2189-2198. Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab2012:264-277. Knutsson L, Larsson E-M, Thilmann O, Stahlberg F, Wirestam R. Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis. J Magn Reson Imaging 2006;23:444-453. Van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 2001;45:477-485. Zaharchuk G, Straka M, Marks MP, Albers GW, Moseley ME, Bammer R. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010;63:1548-1556. Østergaard L, Johannsen P, Host-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C. Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [(15)O]H2O positron emission tomography in humans. J Cereb Blood Flow Metab 1998;18:935-940. Calamante F, Morup M, Hansen LK. Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004;52:789-797. Calamante F, Gadian DG, Connelly A. Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 2002;33:1146-1151. Mehndiratta A, Macintosh BJ, Crane DE, Payne SJ, Chappell MA. A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI. Neuroimage 2013;64:560-570. Calamante F, Willats L, Gadian DG, Connelly A. Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 2006;55:1180-1185. Mehndiratta A, Calamante F, MacIntosh BJ, Crane DE, Payne SJ, Chappell MA. Modeling the residue function in DSC-MRI simulations: Analytical approximation to in vivo data. Magn Reson Med 2014;72:1486-1491. Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 2007;58:1232-1241. Gruner R, Bjornara BT, Moen G, Taxt T. Magnetic resonance brain perfusion imaging with voxel-specific arterial input functions. J Magn Reson Imaging 2006;23:273-284. Willats L, Connelly A, Calamante F. Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 2006;56:146-156. Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965;16:309-321. Crane DE, Donahue MJ, Chappell MA, Sideso E, Handa A, Kennedy J, Jezzard P, Macintosh BJ. Evaluating quantitative approaches to dynamic susceptibility contrast MRI among carotid endarterectomy patients. J Magn Reson Imaging 2013;37:936-943. Ostergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, Gyldensted C, Rosen BR. Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 2000;31:1097-1103. Østergaard L, Chesler DA, Weisskoff RM, Sorensen AG, Rosen BR. Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 1999;19:690-699. Calamante F, Yim PJ, Cebral JR. Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage 2003;19:341-353. Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006;55:524-31. Essig M. Protocol design for high relaxivity contrast agents in MR imaging of the CNS. Eur Radiol 2006;16(Suppl 7):M3-M7. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Fow Metab 1999;19:701-735. Calamante F. Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 2005;22:718-722. Calamante F. Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 2013;74:1-32. Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S. Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 2006;33:570-579. Tomita Y, Tomita M, Schiszler I, Amano T, Tanahashi N, Kobari M, Takeda H, Ohtomo M, Fukuuchi Y. Moment analysis of microflow histogram in focal ischemic lesion to evaluate microvascular derangement after small pial arterial occlusion in rats. J Cereb Blood Flow Metab 2002;22:663-669. Duhamel G, Schlaug G, Alsop DC. Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results. Magn Reson Med 2006;55:514-23. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265. Lorenz C, Benner T, Chen PJ, et al. Automated perfusion-weighted MRI using localized arterial input functions. J Magn Reson Imaging 2006;24:1133-1139. Chappell MA, Groves AR, Whitcher B, Woolrich MW. Variational Bayesian inference for a nonlinear forward model. IEEE Trans Signal Process 2009;57:223-236. Essig M, Shiroishi MS, Nguyen TB, et al. Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 2012;200:24-34. Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000;44:466-473. Van Osch MJP, van der Grond J, Bakker CJG. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. Journal of magnetic resonance imaging: J Magn Reson Imaging 2005;22:704-709. Chappell MA, Woolrich MW, Kazan S, Jezzard P, Payne SJ, Macintosh BJ. Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements. Magn Reson Med 2013;69:563-570. Smith MR, Lu H, Trochet S, Frayne R. Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn Reson Med 2004;51:631-634. Bjornerud A, Emblem KE. A fully automated method for quantitative cer 2013; 3 2013; 69 2012; 200 1990; 14 2006; 33 2000; 44 2013; 64 1972 1999; 41 2003; 19 1996; 36 1965; 16 2003; 50 2001; 45 2005; 22 2010; 63 2009; 56 1998; 18 2009; 57 2006; 23 2006; 24 1999; 19 2008; 27 2002; 225 2011; 66 2012; 68 2010; 30 2012 2006; 56 1994; 193 2006; 55 2006; 16 2002; 33 2011; 31 2005 1962; 10 2003 2007; 58 2004; 52 2013; 37 2004; 51 2013; 33 2013; 74 2000; 31 2002; 22 2011; 42 1995; 268 2013 1990; 113 2014; 72 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 Jacquez J (e_1_2_6_9_1) 1972 Calamante F (e_1_2_6_36_1) 2005 e_1_2_6_13_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 Hudetz AG (e_1_2_6_23_1) 1995; 268 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 (e_1_2_6_25_1) 2012 e_1_2_6_12_1 e_1_2_6_33_1 Leenders KL (e_1_2_6_42_1) 1990; 113 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Calamante F, Willats L, Gadian DG, Connelly A. Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 2006;55:1180-1185. – reference: Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725. – reference: Christensen S, Calamante F, Hjort N, Wu O, Blankholm AD, Desmond P, Davis S, Ostergaard L. Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. J magn reson imaging 2008;27:1371-1381. – reference: Mehndiratta A, Calamante F, MacIntosh BJ, Crane DE, Payne SJ, Chappell MA. Modeling the residue function in DSC-MRI simulations: Analytical approximation to in vivo data. Magn Reson Med 2014;72:1486-1491. – reference: Bonekamp D, Degaonkar M, Barker PB. Quantitative cerebral blood flow in dynamic susceptibility contrast MRI using total cerebral flow from phase contrast magnetic resonance angiography. Magn Reson Med 2011;66:57-66. – reference: Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ. Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 2012;68:495-506. – reference: Park CS, Payne SJ. A generalized mathematical framework for estimating the residue function for arbitrary vascular networks. Interface Focus 2013;3:20120078. – reference: Lorenz C, Benner T, Chen PJ, et al. Automated perfusion-weighted MRI using localized arterial input functions. J Magn Reson Imaging 2006;24:1133-1139. – reference: Essig M. Protocol design for high relaxivity contrast agents in MR imaging of the CNS. Eur Radiol 2006;16(Suppl 7):M3-M7. – reference: Tomita Y, Tomita M, Schiszler I, Amano T, Tanahashi N, Kobari M, Takeda H, Ohtomo M, Fukuuchi Y. Moment analysis of microflow histogram in focal ischemic lesion to evaluate microvascular derangement after small pial arterial occlusion in rats. J Cereb Blood Flow Metab 2002;22:663-669. – reference: Willats L, Connelly A, Calamante F. Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 2006;56:146-156. – reference: Zaharchuk G, Straka M, Marks MP, Albers GW, Moseley ME, Bammer R. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010;63:1548-1556. – reference: Jacquez J. Compartmental analysis in biology and medicine: kinetics of distribution of tracer-labeled materials. Amsterdam: Elsevier; 1972. – reference: Zanderigo F, Bertoldo A, Pillonetto G, Cobelli Ast C. Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov. IEEE Trans Biomed Eng 2009;56:1287-1297. – reference: Crane DE, Donahue MJ, Chappell MA, Sideso E, Handa A, Kennedy J, Jezzard P, Macintosh BJ. Evaluating quantitative approaches to dynamic susceptibility contrast MRI among carotid endarterectomy patients. J Magn Reson Imaging 2013;37:936-943. – reference: Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000;44:466-473. – reference: Mehndiratta A, Macintosh BJ, Crane DE, Payne SJ, Chappell MA. A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI. Neuroimage 2013;64:560-570. – reference: MacIntosh BJ, Sideso E, Donahue MJ, Chappell MA, Günther M, Handa A, Kennedy J, Jezzard P. Intracranial hemodynamics is altered by carotid artery disease and after endarterectomy: a dynamic magnetic resonance angiography study. Stroke 2011;42:979-984. – reference: Østergaard L, Johannsen P, Host-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C. Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [(15)O]H2O positron emission tomography in humans. J Cereb Blood Flow Metab 1998;18:935-940. – reference: Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50:164-174. – reference: Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003;50:1237-1247. – reference: Gruner R, Bjornara BT, Moen G, Taxt T. Magnetic resonance brain perfusion imaging with voxel-specific arterial input functions. J Magn Reson Imaging 2006;23:273-284. – reference: Van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 2001;45:477-485. – reference: Knutsson L, Larsson E-M, Thilmann O, Stahlberg F, Wirestam R. Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis. J Magn Reson Imaging 2006;23:444-453. – reference: Chappell MA, Groves AR, Whitcher B, Woolrich MW. Variational Bayesian inference for a nonlinear forward model. IEEE Trans Signal Process 2009;57:223-236. – reference: Essig M, Shiroishi MS, Nguyen TB, et al. Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 2012;200:24-34. – reference: Calamante F, Gadian DG, Connelly A. Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 2002;33:1146-1151. – reference: Van Osch MJP, van der Grond J, Bakker CJG. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. Journal of magnetic resonance imaging: J Magn Reson Imaging 2005;22:704-709. – reference: Østergaard L, Chesler DA, Weisskoff RM, Sorensen AG, Rosen BR. Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 1999;19:690-699. – reference: Simonsen CZ, Rohl L, Vestergaard-poulsen P, Østergaard L. Final infarct size after acute stroke: prediction with flow. Radiology 2002;225:269-275. – reference: Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006;55:524-31. – reference: Vonken EP, Beekman FJ, Bakker CJ, Viergever MA. Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magn Reson Med 1999;41:343-350. – reference: Ostergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, Gyldensted C, Rosen BR. Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 2000;31:1097-1103. – reference: Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965;16:309-321. – reference: Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962;10:393-407. – reference: Duhamel G, Schlaug G, Alsop DC. Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results. Magn Reson Med 2006;55:514-23. – reference: Calamante F. Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 2013;74:1-32. – reference: Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 2007;58:1232-1241. – reference: Calamante F, Morup M, Hansen LK. Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004;52:789-797. – reference: Ostergaard L, Jespersen SN, Mouridsen K, et al. The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab 2013;33:635-648. – reference: Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab2012:264-277. – reference: Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637-641. – reference: Calamante F, Yim PJ, Cebral JR. Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage 2003;19:341-353. – reference: Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Fow Metab 1999;19:701-735. – reference: Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265. – reference: Smith MR, Lu H, Trochet S, Frayne R. Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn Reson Med 2004;51:631-634. – reference: Calamante F. Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 2005;22:718-722. – reference: Bjornerud A, Emblem KE. A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. J Cereb Blood Flow Metab 2010;30:1066-1078. – reference: Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise RJ, Hatazawa J, Herold S. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 1990;113:27-47. – reference: Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S. Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 2006;33:570-579. – reference: Willats L, Christensen S, Ma HK, Donnan GA, Connelly A, Calamante F. Validating a local arterial input function method for improved perfusion quantification in stroke. J Cereb Blood Flow Metab 2011;31:2189-2198. – reference: Chappell MA, Woolrich MW, Kazan S, Jezzard P, Payne SJ, Macintosh BJ. Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements. Magn Reson Med 2013;69:563-570. – reference: Hudetz AG, Feher G, Weigle CG, Knuese DE, Kampine JP. Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension. Am J Physiol 1995;268:H2202-H2210. – volume: 37 start-page: 936 year: 2013 end-page: 943 article-title: Evaluating quantitative approaches to dynamic susceptibility contrast MRI among carotid endarterectomy patients publication-title: J Magn Reson Imaging – volume: 19 start-page: 690 year: 1999 end-page: 699 article-title: Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data publication-title: J Cereb Blood Flow Metab – volume: 50 start-page: 164 year: 2003 end-page: 174 article-title: Tracer arrival timing‐insensitive technique for estimating flow in MR perfusion‐weighted imaging using singular value decomposition with a block‐circulant deconvolution matrix publication-title: Magn Reson Med – volume: 14 start-page: 249 year: 1990 end-page: 265 article-title: Perfusion imaging with NMR contrast agents publication-title: Magn Reson Med – volume: 10 start-page: 393 year: 1962 end-page: 407 article-title: Theoretical basis of indicator‐dilution methods for measuring flow and volume publication-title: Circ Res – volume: 52 start-page: 789 year: 2004 end-page: 797 article-title: Defining a local arterial input function for perfusion MRI using independent component analysis publication-title: Magn Reson Med – volume: 55 start-page: 524 year: 2006 end-page: 31 article-title: Automatic selection of arterial input function using cluster analysis publication-title: Magn Reson Med – volume: 200 start-page: 24 year: 2012 end-page: 34 article-title: Perfusion MRI: the five most frequently asked technical questions publication-title: AJR Am J Roentgenol – volume: 33 start-page: 570 year: 2006 end-page: 579 article-title: Bayesian estimation of cerebral perfusion using a physiological model of microvasculature publication-title: Neuroimage – volume: 22 start-page: 718 year: 2005 end-page: 722 article-title: Bolus dispersion issues related to the quantification of perfusion MRI data publication-title: J Magn Reson Imaging – volume: 42 start-page: 979 year: 2011 end-page: 984 article-title: Intracranial hemodynamics is altered by carotid artery disease and after endarterectomy: a dynamic magnetic resonance angiography study publication-title: Stroke – volume: 24 start-page: 1133 year: 2006 end-page: 1139 article-title: Automated perfusion‐weighted MRI using localized arterial input functions publication-title: J Magn Reson Imaging – volume: 23 start-page: 444 year: 2006 end-page: 453 article-title: Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis publication-title: J Magn Reson Imaging – volume: 33 start-page: 1146 year: 2002 end-page: 1151 article-title: Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use publication-title: Stroke – volume: 68 start-page: 495 year: 2012 end-page: 506 article-title: Correction for arterial‐tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging publication-title: Magn Reson Med – volume: 23 start-page: 273 year: 2006 end-page: 284 article-title: Magnetic resonance brain perfusion imaging with voxel‐specific arterial input functions publication-title: J Magn Reson Imaging – volume: 74 start-page: 1 year: 2013 end-page: 32 article-title: Arterial input function in perfusion MRI: a comprehensive review publication-title: Prog Nucl Magn Reson Spectrosc – volume: 268 start-page: H2202 year: 1995 end-page: H2210 article-title: Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension publication-title: Am J Physiol – volume: 72 start-page: 1486 year: 2014 end-page: 1491 article-title: Modeling the residue function in DSC‐MRI simulations: Analytical approximation to in vivo data publication-title: Magn Reson Med – volume: 66 start-page: 57 year: 2011 end-page: 66 article-title: Quantitative cerebral blood flow in dynamic susceptibility contrast MRI using total cerebral flow from phase contrast magnetic resonance angiography publication-title: Magn Reson Med – year: 1972 – volume: 56 start-page: 146 year: 2006 end-page: 156 article-title: Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion publication-title: Magn Reson Med – volume: 41 start-page: 343 year: 1999 end-page: 350 article-title: Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI publication-title: Magn Reson Med – volume: 50 start-page: 1237 year: 2003 end-page: 1247 article-title: Quantification of bolus‐tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization publication-title: Magn Reson Med – volume: 58 start-page: 1232 year: 2007 end-page: 1241 article-title: Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age‐ and gender‐dependence with fully automatic image postprocessing algorithm publication-title: Magn Reson Med – volume: 56 start-page: 1287 year: 2009 end-page: 1297 article-title: Nonlinear stochastic regularization to characterize tissue residue function in bolus‐tracking MRI: assessment and comparison with SVD, block‐circulant SVD, and Tikhonov publication-title: IEEE Trans Biomed Eng – volume: 30 start-page: 1066 year: 2010 end-page: 1078 article-title: A fully automated method for quantitative cerebral hemodynamic analysis using DSC‐MRI publication-title: J Cereb Blood Flow Metab – volume: 3 start-page: 20120078 year: 2013 article-title: A generalized mathematical framework for estimating the residue function for arbitrary vascular networks publication-title: Interface Focus – volume: 55 start-page: 514 year: 2006 end-page: 23 article-title: Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results publication-title: Magn Reson Med – volume: 19 start-page: 341 year: 2003 end-page: 353 article-title: Estimation of bolus dispersion effects in perfusion MRI using image‐based computational fluid dynamics publication-title: Neuroimage – volume: 19 start-page: 701 year: 1999 end-page: 735 article-title: Measuring cerebral blood flow using magnetic resonance imaging techniques publication-title: J Cereb Blood Fow Metab – volume: 57 start-page: 223 year: 2009 end-page: 236 article-title: Variational Bayesian inference for a nonlinear forward model publication-title: IEEE Trans Signal Process – volume: 64 start-page: 560 year: 2013 end-page: 570 article-title: A control point interpolation method for the non‐parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI publication-title: Neuroimage – volume: 63 start-page: 1548 year: 2010 end-page: 1556 article-title: Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow publication-title: Magn Reson Med – volume: 22 start-page: 663 year: 2002 end-page: 669 article-title: Moment analysis of microflow histogram in focal ischemic lesion to evaluate microvascular derangement after small pial arterial occlusion in rats publication-title: J Cereb Blood Flow Metab – volume: 31 start-page: 2189 year: 2011 end-page: 2198 article-title: Validating a local arterial input function method for improved perfusion quantification in stroke publication-title: J Cereb Blood Flow Metab – volume: 55 start-page: 1180 year: 2006 end-page: 1185 article-title: Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke publication-title: Magn Reson Med – volume: 16 start-page: 309 year: 1965 end-page: 321 article-title: Equations for measuring blood flow by external monitoring of radioisotopes publication-title: Circ Res – year: 2003 – volume: 18 start-page: 935 year: 1998 end-page: 940 article-title: Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [(15)O]H2O positron emission tomography in humans publication-title: J Cereb Blood Flow Metab – volume: 69 start-page: 563 year: 2013 end-page: 570 article-title: Modeling dispersion in arterial spin labeling: validation using dynamic angiographic measurements publication-title: Magn Reson Med – start-page: 264 year: 2012 end-page: 277 article-title: Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism publication-title: J Cereb Blood Flow Metab – volume: 36 start-page: 715 year: 1996 end-page: 725 article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages publication-title: Part I. Mathematical approach and statistical analysis. Magn Reson Med – volume: 22 start-page: 704 year: 2005 end-page: 709 article-title: Partial volume effects on arterial input functions: shape and amplitude distortions and their correction publication-title: Journal of magnetic resonance imaging: J Magn Reson Imaging – volume: 33 start-page: 635 year: 2013 end-page: 648 article-title: The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model publication-title: J Cereb Blood Flow Metab – volume: 31 start-page: 1097 year: 2000 end-page: 1103 article-title: Combined diffusion‐weighted and perfusion‐weighted flow heterogeneity magnetic resonance imaging in acute stroke publication-title: Stroke – volume: 51 start-page: 631 year: 2004 end-page: 634 article-title: Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies publication-title: Magn Reson Med – volume: 44 start-page: 466 year: 2000 end-page: 473 article-title: Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition publication-title: Magn Reson Med – start-page: 141 year: 2005 end-page: 160 – volume: 113 start-page: 27 year: 1990 end-page: 47 article-title: Cerebral blood flow, blood volume and oxygen utilization publication-title: Normal values and effect of age. Brain – volume: 45 start-page: 477 year: 2001 end-page: 485 article-title: Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI publication-title: Magn Reson Med – volume: 16 start-page: M3 issue: Suppl 7 year: 2006 end-page: M7 article-title: Protocol design for high relaxivity contrast agents in MR imaging of the CNS publication-title: Eur Radiol – volume: 225 start-page: 269 year: 2002 end-page: 275 article-title: Final infarct size after acute stroke: prediction with flow publication-title: Radiology – volume: 27 start-page: 1371 year: 2008 end-page: 1381 article-title: Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI publication-title: J magn reson imaging – volume: 193 start-page: 637 year: 1994 end-page: 641 article-title: Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast‐enhanced MR imaging publication-title: Radiology – year: 2013 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.20759 – ident: e_1_2_6_37_1 doi: 10.1016/S1053-8119(03)00090-9 – ident: e_1_2_6_29_1 – ident: e_1_2_6_51_1 doi: 10.1002/mrm.23257 – ident: e_1_2_6_2_1 doi: 10.1007/s10406-006-0190-5 – ident: e_1_2_6_46_1 doi: 10.1098/rsfs.2012.0078 – ident: e_1_2_6_48_1 doi: 10.1002/mrm.22776 – ident: e_1_2_6_53_1 – ident: e_1_2_6_28_1 – ident: e_1_2_6_45_1 doi: 10.1002/jmri.23882 – ident: e_1_2_6_3_1 doi: 10.2214/AJR.12.9543 – ident: e_1_2_6_16_1 doi: 10.1002/mrm.20227 – ident: e_1_2_6_17_1 doi: 10.1016/j.pnmrs.2013.04.002 – volume: 268 start-page: H2202 year: 1995 ident: e_1_2_6_23_1 article-title: Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension publication-title: Am J Physiol – ident: e_1_2_6_8_1 doi: 10.1161/01.RES.10.3.393 – ident: e_1_2_6_50_1 doi: 10.1002/mrm.22329 – ident: e_1_2_6_7_1 doi: 10.1161/01.RES.16.4.309 – ident: e_1_2_6_34_1 doi: 10.1002/mrm.20006 – ident: e_1_2_6_22_1 doi: 10.1148/radiol.2251011249 – ident: e_1_2_6_38_1 doi: 10.1097/00004647-199907000-00001 – ident: e_1_2_6_31_1 doi: 10.1002/(SICI)1522-2594(199902)41:2<343::AID-MRM19>3.0.CO;2-T – ident: e_1_2_6_49_1 doi: 10.1002/mrm.21420 – ident: e_1_2_6_4_1 doi: 10.1002/mrm.1910360510 – ident: e_1_2_6_41_1 doi: 10.1002/jmri.20454 – ident: e_1_2_6_26_1 doi: 10.1038/jcbfm.2013.18 – ident: e_1_2_6_5_1 doi: 10.1002/mrm.1910140211 – ident: e_1_2_6_54_1 doi: 10.1038/jcbfm.2011.78 – ident: e_1_2_6_27_1 doi: 10.1016/j.neuroimage.2012.08.083 – ident: e_1_2_6_10_1 doi: 10.1097/00004647-199906000-00013 – volume: 113 start-page: 27 year: 1990 ident: e_1_2_6_42_1 article-title: Cerebral blood flow, blood volume and oxygen utilization publication-title: Normal values and effect of age. Brain – ident: e_1_2_6_13_1 doi: 10.1002/jmri.20455 – ident: e_1_2_6_14_1 doi: 10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4 – ident: e_1_2_6_43_1 doi: 10.1002/mrm.10643 – ident: e_1_2_6_59_1 doi: 10.1002/jmri.21386 – ident: e_1_2_6_24_1 doi: 10.1097/00004647-200206000-00004 – ident: e_1_2_6_47_1 doi: 10.1002/mrm.20873 – ident: e_1_2_6_33_1 doi: 10.1109/TBME.2009.2013820 – start-page: 141 volume-title: Clinical MR neuroimaging: diffusion, perfusion and spectroscopy year: 2005 ident: e_1_2_6_36_1 – ident: e_1_2_6_6_1 doi: 10.1148/radiology.193.3.7972800 – ident: e_1_2_6_12_1 doi: 10.1038/jcbfm.2010.4 – ident: e_1_2_6_40_1 doi: 10.1109/TSP.2008.2005752 – ident: e_1_2_6_52_1 – ident: e_1_2_6_44_1 doi: 10.1161/STROKEAHA.110.590786 – ident: e_1_2_6_57_1 doi: 10.1002/jmri.20535 – ident: e_1_2_6_58_1 doi: 10.1002/jmri.20505 – volume-title: Compartmental analysis in biology and medicine: kinetics of distribution of tracer‐labeled materials year: 1972 ident: e_1_2_6_9_1 – ident: e_1_2_6_55_1 doi: 10.1002/mrm.20802 – ident: e_1_2_6_30_1 doi: 10.1002/mrm.25056 – start-page: 264 year: 2012 ident: e_1_2_6_25_1 article-title: Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism publication-title: J Cereb Blood Flow Metab – ident: e_1_2_6_21_1 doi: 10.1161/01.STR.31.5.1097 – ident: e_1_2_6_15_1 doi: 10.1161/01.STR.0000014208.05597.33 – ident: e_1_2_6_19_1 doi: 10.1097/00004647-199809000-00002 – ident: e_1_2_6_35_1 doi: 10.1002/mrm.20940 – ident: e_1_2_6_39_1 doi: 10.1002/mrm.24260 – ident: e_1_2_6_20_1 doi: 10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M – ident: e_1_2_6_32_1 doi: 10.1016/j.neuroimage.2006.06.015 – ident: e_1_2_6_11_1 doi: 10.1002/mrm.10522 – ident: e_1_2_6_56_1 doi: 10.1002/jmri.20717 |
SSID | ssj0009974 |
Score | 2.2207785 |
Snippet | Purpose
Bolus dispersion in DSC‐MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis.... Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However,... Purpose Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis.... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1762 |
SubjectTerms | Adult Aged Algorithms arterial input function Bayesian Analysis Carotid Arteries - metabolism Carotid Arteries - pathology Carotid Stenosis - metabolism Carotid Stenosis - pathology Computer Simulation Contrast Media - pharmacokinetics control point interpolation method deconvolution dispersion Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Magnetic Resonance Angiography - methods Male Metabolic Clearance Rate Models, Cardiovascular Reproducibility of Results residue function Sensitivity and Specificity Tissue Distribution |
Title | Modeling and correction of bolus dispersion effects in dynamic susceptibility contrast MRI |
URI | https://api.istex.fr/ark:/67375/WNG-VVR9CGSS-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25077 https://www.ncbi.nlm.nih.gov/pubmed/24453108 https://www.proquest.com/docview/1622355006 https://www.proquest.com/docview/1624936006 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEB5KRfHFS72dWiWKiC97mt3NJht8kmpbhe3Dqa1FhJDbQqndU86eA-qvd5K9lEoF8W1hZ9lcZiZfkplvAF45bkWROppIXNwThpA90egTk9rmrs5sWQsacoerA75_xD6dFCdr8HbIhen4IcYDt2AZ0V8HA9em3b4kDT1fnE9x_RYhkzzNeeDNfz-7pI6SsmNgFiz4GckGViGabY9fXlmLboRh_XEd0LyKW-PCs3sXvg1N7uJNzqarpZnaX3-wOf5nn-7BnR6QknedBt2HNd9swK2qv3LfgJsxRtS2D-BrqJsWsteJbhyxoaxHTIog85oY1OCWuNPAOx7O30gfJ0JOG-K6ovekXbUxhiaG4_4kMUhet0tSzT4-hKPdD5939pO-NENimUTX6n2ae-GZt7wQLpPa6IzpHLdbWlDqMl5L703NCm2pE9amXHpmtHd1ikqQs_wRrDfzxj8BohEDSVm7vOSSISAsU8tNKQSVzrDC0Am8GSZJ2Z63PJTP-K46xuVM4aipOGoTeDmKXnRkHdcJvY4zPUroxVmIbhOF-nKwp46PZ3Jn7_BQsQlsDaqgesNuVcoRT-GujvIJvBhfo0mGexbd-PkqyjCZ8yjzuFOh8WeIptDr0RJ7FRXh7-1U1ayKD5v_LvoUbiOgY124zRasLxcr_wxB09I8j9bxG4QBEdA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVhwvHOVaKGAQQrxk6ySOHUu8oEK7hWYftqeQkOXYjlSVZtFmVwJ-PWMnm6qoSIi3SJkoPub4bI-_AXhtuRFZbGkkMbhHDCF7pNEnRpVJbZWYvBLU3x0uxnx0yD6dZCcr8G55F6blh-g33LxlBH_tDdxvSG9esIaez86HGMCFuAZrDIGGX3p9mFyQR0nZcjAL5j2NZEteIZps9p9eikZrfmB_XAU1LyPXEHq278DXZaPbjJOz4WJeDs2vP_gc_7dXd-F2h0nJ-1aJ7sGKq9fhRtGduq_D9ZAmapr78MWXTvMX2ImuLTG-ske4F0GmFSlRiRtiTz31uN-CI12qCDmtiW3r3pNm0YQ0mpCR-5OEPHndzEkx2X0Ah9sfD7ZGUVedITJMond1Lk6dcMwZngmbSF3qhOkUV1xaUGoTXknnyopl2lArjIm5dKzUzlYx6kHK0oewWk9r9xiIRhgkZWXTnEuGmDCPDS9zIai0JctKOoC3y1lSpqMu9xU0vqmWdDlROGoqjNoAXvWi31u-jquE3oSp7iX07MwnuIlMHY931NHRRG7t7O8rNoCNpS6ozrYbFXOEVLiwo3wAL_vXaJX-qEXXbroIMkymPMg8anWo_xkCKnR8NMdeBU34eztVMSnCw5N_F30BN0cHxZ7a2x1_fgq3EN-xNvtmA1bns4V7hhhqXj4PpvIbm4AV7w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFosvXupttWoUEV9mm5nJJBt8kuq2VWeRrb0gQsgkGSi1s2VnF9Rf70nmUioVxLeBOcPkci5fkpPvALy03IgstjSSGNwjhpA90ugTo9KktkzMqBTU3x3OJ3z3gH04zo5X4E13F6bhh-g33LxlBH_tDfzcllsXpKFn87Mhxm8hrsEa44gkPCKaXnBHSdlQMAvmHY1kHa0QTbb6Ty8FozU_rj-uQpqXgWuIPONb8K1rc5NwcjpcLoqh-fUHneN_duo23GwRKXnbqNAdWHHVBqzn7Zn7BlwPSaKmvgtffeE0f32d6MoS4-t6hFsRZFaSAlW4JvbEE4_7DTjSJoqQk4rYpuo9qZd1SKIJ-bg_SciS1_WC5NO9e3Awfv9lezdqazNEhkn0rc7FqROOOcMzYROpC50wneJ6SwtKbcJL6VxRskwbaoUxMZeOFdrZMkYtSFl6H1arWeUeAtEIgqQsbTrikuE8jmLDi5EQVNqCZQUdwOtukpRpict9_YzvqqFcThSOmgqjNoAXveh5w9ZxldCrMNO9hJ6f-vQ2kamjyY46PJzK7Z39fcUGsNmpgmotu1YxR0CFyzrKB_C8f4026Q9adOVmyyDDZMqDzINGhfqfIZxCt0dH2KugCH9vp8qneXh49O-iz2D987ux-rQ3-fgYbiC4Y03qzSasLuZL9wQB1KJ4GgzlN0w_FJ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+correction+of+bolus+dispersion+effects+in+dynamic+susceptibility+contrast+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Mehndiratta%2C+Amit&rft.au=Calamante%2C+Fernando&rft.au=MacIntosh%2C+Bradley+J&rft.au=Crane%2C+David+E&rft.date=2014-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=72&rft.issue=6&rft.spage=1762&rft_id=info:doi/10.1002%2Fmrm.25077&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |