A robust sensor-selection method for P300 brain–computer interfaces

A brain-computer interface (BCI) is a specific type of human-computer interface that enables direct communication between human and computer through decoding of brain activity. As such, event-related potentials like the P300 can be obtained with an oddball paradigm whose targets are selected by the...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 8; no. 1; pp. 016001 - 1-12
Main Authors Cecotti, H, Rivet, B, Congedo, M, Jutten, C, Bertrand, O, Maby, E, Mattout, J
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.02.2011
Subjects
Online AccessGet full text
ISSN1741-2552
1741-2560
1741-2552
DOI10.1088/1741-2560/8/1/016001

Cover

Loading…
More Information
Summary:A brain-computer interface (BCI) is a specific type of human-computer interface that enables direct communication between human and computer through decoding of brain activity. As such, event-related potentials like the P300 can be obtained with an oddball paradigm whose targets are selected by the user. This paper deals with methods to reduce the needed set of EEG sensors in the P300 speller application. A reduced number of sensors yields more comfort for the user, decreases installation time duration, may substantially reduce the financial cost of the BCI setup and may reduce the power consumption for wireless EEG caps. Our new approach to select relevant sensors is based on backward elimination using a cost function based on the signal to signal-plus-noise ratio, after some spatial filtering. We show that this cost function selects sensors' subsets that provide a better accuracy in the speller recognition rate during the test sessions than selected subsets based on classification accuracy. We validate our selection strategy on data from 20 healthy subjects.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1741-2552
1741-2560
1741-2552
DOI:10.1088/1741-2560/8/1/016001