What to eat in a warming world do increased temperatures necessitate hazardous duty pay?
Contemporary climate change affects nearly all biomes, causing shifts in animal distributions and resource availability. Changes in resource selection may allow individuals to offset climatic stress, thereby providing a mechanism for persistence amidst warming conditions. Whereas the role of predati...
Saved in:
Published in | Oecologia Vol. 186; no. 1; pp. 73 - 84 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Science + Business Media
01.01.2018
Springer Berlin Heidelberg Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Contemporary climate change affects nearly all biomes, causing shifts in animal distributions and resource availability. Changes in resource selection may allow individuals to offset climatic stress, thereby providing a mechanism for persistence amidst warming conditions. Whereas the role of predation risk in food choice has been studied broadly, the extent to which individuals respond to thermo-regulatory risk by changing resource preferences is unclear. We addressed whether individuals compensated for temperature-related reductions in foraging time by altering forage preferences, using the American pika (Ochotona princeps) as a model species. We tested two hypotheses: (1) food-quality hypothesis—individuals exposed to temperature extremes should select higher-quality vegetation in return for accepting a physiologically riskier feeding situation; and (2) food-availability hypothesis—individuals exposed to temperature extremes should prioritize foraging quickly, thereby decreasing selection for higher-quality food. We quantified the composition and quality (% moisture, % nitrogen, and fiber content) of available and harvested vegetation, and deployed a network of temperature sensors to measure in situ conditions for 30 individuals, during July–Sept., 2015. Individuals exposed to more extreme daytime temperatures showed increased selection for high-nitrogen and for low-fiber vegetation, demonstrating strong support for the food-quality hypothesis. By contrast, pikas that experienced warmer conditions did not reduce selection for any of the three vegetation-quality metrics, as predicted by the food-availability hypothesis. By shifting resource-selection patterns, temperature-limited animals may be able to proximately buffer some of the negative effects associated with rapidly warming environments, provided that sufficient resources remain on the landscape. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0029-8549 1432-1939 |
DOI: | 10.1007/s00442-017-3993-2 |