Biomimetic Organization: Octapeptide Self-Assembly into Nanotubes of Viral Capsid-like Dimension
The controlled self-assembly of complex molecules into well defined hierarchical structures is a promising route for fabricating nanostructures. These nanoscale structures can be realized by naturally occurring proteins such as tobacco mosaic virus, capsid proteins, tubulin, actin, etc. Here, we rep...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 100; no. 18; pp. 10258 - 10262 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.09.2003
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The controlled self-assembly of complex molecules into well defined hierarchical structures is a promising route for fabricating nanostructures. These nanoscale structures can be realized by naturally occurring proteins such as tobacco mosaic virus, capsid proteins, tubulin, actin, etc. Here, we report a simple alternative method based on self-assembling nanotubes formed by a synthetic therapeutic octapeptide, Lanreotide in water. We used a multidisciplinary approach involving optical and electron microscopies, vibrational spectroscopies, and small and wide angle x-ray scattering to elucidate the hierarchy of structures exhibited by this system. The results revealed the hexagonal packing of nanotubes, and high degree of monodispersity in the tube diameter (244 Å) and wall thickness (≈18 Å). Moreover, the diameter is tunable by suitable modifications in the molecular structure. The self-assembly of the nanotubes occurs through the association of β-sheets driven by amphiphilicity and a systematic aromatic/aliphatic side chain segregation. This original and simple system is a unique example for the study of complex self-assembling processes generated by de novo molecules or amyloid peptides. |
---|---|
AbstractList | The controlled self-assembly of complex molecules into well defined hierarchical structures is a promising route for fabricating nanostructures. These nanoscale structures can be realized by naturally occurring proteins such as tobacco mosaic virus, capsid proteins, tubulin, actin, etc. Here, we report a simple alternative method based on self-assembling nanotubes formed by a synthetic therapeutic octapeptide, Lanreotide in water. We used a multidisciplinary approach involving optical and electron microscopies, vibrational spectroscopies, and small and wide angle x-ray scattering to elucidate the hierarchy of structures exhibited by this system. The results revealed the hexagonal packing of nanotubes, and high degree of monodispersity in the tube diameter (244 Å) and wall thickness (≈18 Å). Moreover, the diameter is tunable by suitable modifications in the molecular structure. The self-assembly of the nanotubes occurs through the association of β-sheets driven by amphiphilicity and a systematic aromatic/aliphatic side chain segregation. This original and simple system is a unique example for the study of complex self-assembling processes generated by de novo molecules or amyloid peptides. The controlled self-assembly of complex molecules into well defined hierarchical structures is a promising route for fabricating nanostructures. These nanoscale structures can be realized by naturally occurring proteins such as tobacco mosaic virus, capsid proteins, tubulin, actin, etc. Here, we report a simple alternative method based on self-assembling nanotubes formed by a synthetic therapeutic octapeptide, Lanreotide in water. We used a multidisciplinary approach involving optical and electron microscopies, vibrational spectroscopies, and small and wide angle x-ray scattering to elucidate the hierarchy of structures exhibited by this system. The results revealed the hexagonal packing of nanotubes, and high degree of monodispersity in the tube diameter (244 A) and wall thickness (approximately 18 A). Moreover, the diameter is tunable by suitable modifications in the molecular structure. The self-assembly of the nanotubes occurs through the association of beta-sheets driven by amphiphilicity and a systematic aromatic/aliphatic side chain segregation. This original and simple system is a unique example for the study of complex self-assembling processes generated by de novo molecules or amyloid peptides. [PUBLICATION ABSTRACT] The controlled self-assembly of complex molecules into well defined hierarchical structures is a promising route for fabricating nanostructures. These nanoscale structures can be realized by naturally occurring proteins such as tobacco mosaic virus, capsid proteins, tubulin, actin, etc. Here, we report a simple alternative method based on self-assembling nanotubes formed by a synthetic therapeutic octapeptide, Lanreotide in water. We used a multidisciplinary approach involving optical and electron microscopies, vibrational spectroscopies, and small and wide angle x-ray scattering to elucidate the hierarchy of structures exhibited by this system. The results revealed the hexagonal packing of nanotubes, and high degree of monodispersity in the tube diameter (244 Å) and wall thickness (≈18 Å). Moreover, the diameter is tunable by suitable modifications in the molecular structure. The self-assembly of the nanotubes occurs through the association of β-sheets driven by amphiphilicity and a systematic aromatic/aliphatic side chain segregation. This original and simple system is a unique example for the study of complex self-assembling processes generated by de novo molecules or amyloid peptides. The controlled self-assembly of complex molecules into well defined hierarchical structures is a promising route for fabricating nanostructures. These nanoscale structures can be realized by naturally occurring proteins such as tobacco mosaic virus, capsid proteins, tubulin, actin, etc. Here, we report a simple alternative method based on self-assembling nanotubes formed by a synthetic therapeutic octapeptide, Lanreotide in water. We used a multidisciplinary approach involving optical and electron microscopies, vibrational spectroscopies, and small and wide angle x-ray scattering to elucidate the hierarchy of structures exhibited by this system. The results revealed the hexagonal packing of nanotubes, and high degree of monodispersity in the tube diameter (244 A) and wall thickness (approximately equal to 18 A). Moreover, the diameter is tunable by suitable modifications in the molecular structure. The self-assembly of the nanotubes occurs through the association of beta-sheets driven by amphiphilicity and a systematic aromatic/aliphatic side chain segregation. This original and simple system is a unique example for the study of complex self-assembling processes generated by de novo molecules or amyloid peptides. |
Author | Dedieu, Jean-Claude Artzner, Franck Cherif-Cheikh, Roland Paternostre, Maïté Torres, Maria-Luisa Narayanan, Theyencheri Keller, Gérard Robert, Bruno Gulik-Krzywicki, Thaddée Calvo, Pilar Valéry, Céline |
AuthorAffiliation | Unité Mixte de Recherche 8612, Centre National de la Recherche Scientifique, Faculté de Pharmacie, 5 Rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France; ‡ Service de Biophysique des Fonctions Membranaires, Département de Biologie Joliot Curie, Unité de Recherche Associée 2096, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique-Saclay, 91191 Gif-sur-Yvette, France; ¶ Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France; ∥ European Synchrotron Radiation Facility, BP 220, 38403 Grenoble Cedex, France; and †† Ipsen Pharma S.A., Ctra. Laureà Miró 395, 08980-Sant Feliu de Llobregat, Barcelona, Spain |
AuthorAffiliation_xml | – name: Unité Mixte de Recherche 8612, Centre National de la Recherche Scientifique, Faculté de Pharmacie, 5 Rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France; ‡ Service de Biophysique des Fonctions Membranaires, Département de Biologie Joliot Curie, Unité de Recherche Associée 2096, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique-Saclay, 91191 Gif-sur-Yvette, France; ¶ Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France; ∥ European Synchrotron Radiation Facility, BP 220, 38403 Grenoble Cedex, France; and †† Ipsen Pharma S.A., Ctra. Laureà Miró 395, 08980-Sant Feliu de Llobregat, Barcelona, Spain |
Author_xml | – sequence: 1 givenname: Céline surname: Valéry fullname: Valéry, Céline – sequence: 2 givenname: Maïté surname: Paternostre fullname: Paternostre, Maïté – sequence: 3 givenname: Bruno surname: Robert fullname: Robert, Bruno – sequence: 4 givenname: Thaddée surname: Gulik-Krzywicki fullname: Gulik-Krzywicki, Thaddée – sequence: 5 givenname: Theyencheri surname: Narayanan fullname: Narayanan, Theyencheri – sequence: 6 givenname: Jean-Claude surname: Dedieu fullname: Dedieu, Jean-Claude – sequence: 7 givenname: Gérard surname: Keller fullname: Keller, Gérard – sequence: 8 givenname: Maria-Luisa surname: Torres fullname: Torres, Maria-Luisa – sequence: 9 givenname: Roland surname: Cherif-Cheikh fullname: Cherif-Cheikh, Roland – sequence: 10 givenname: Pilar surname: Calvo fullname: Calvo, Pilar – sequence: 11 givenname: Franck surname: Artzner fullname: Artzner, Franck |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12930900$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URKeFNRuELBZILNJeP2InlViU4SlVzILH1niSm-IhsUPsIMqvx6MZdYANq2vJ3zk6R-eEHPngkZCHDM4YaHE-ehvPmBagoGYAd8iC5UehZA1HZAHAdVFJLo_JSYwbAKjLCu6RY8ZrATXAgnx54cLgBkyuoavp2nr3yyYX_AVdNcmOOCbXIv2AfVdcxojDur-hzqdA31sf0rzGSENHP7vJ9nRpx-jaonffkL7Mnj5mo_vkbmf7iA_295R8ev3q4_JtcbV68255eVU0si5T0YJcMylBqIarquW5jWINVJ2wol1zxbEUZSsZK2WNgG3FukZzxZTolBatEqfk-c53nNcDtg36lDOZcXKDnW5MsM78_ePdV3MdfhhWi1JWWf90r5_C9xljMoOLDfa99RjmaLTQILSWGXzyD7gJ8-RzN8OBiZJrvU1zvoOaKcQ4YXcbhIHZLme2y5nDclnx-M_8B34_VQae7YGt8mCX_ap8eFmZbu77hD9TZul_2Iw82iGbmMJ0ywgmdS4qfgP7SbhN |
CitedBy_id | crossref_primary_10_1002_ange_200700861 crossref_primary_10_1021_ja9088764 crossref_primary_10_1038_ncomms8771 crossref_primary_10_1126_sciadv_aat1817 crossref_primary_10_3390_pathogens3040791 crossref_primary_10_1016_j_str_2006_05_016 crossref_primary_10_1007_s12274_023_5970_x crossref_primary_10_1073_pnas_2123197119 crossref_primary_10_1021_jp307989a crossref_primary_10_1038_ncomms15856 crossref_primary_10_1039_D3SM00930K crossref_primary_10_1016_j_tibtech_2006_08_004 crossref_primary_10_1016_j_jsb_2007_08_006 crossref_primary_10_1002_anie_200500536 crossref_primary_10_1039_D0SM02253E crossref_primary_10_1002_ange_200805010 crossref_primary_10_1016_j_nantod_2016_02_004 crossref_primary_10_1208_s12248_017_0044_1 crossref_primary_10_1002_ange_202212829 crossref_primary_10_1039_D0CP03204B crossref_primary_10_1016_j_cis_2023_102959 crossref_primary_10_1002_masy_200650910 crossref_primary_10_1016_j_tet_2004_02_019 crossref_primary_10_1021_acs_jpcb_7b02448 crossref_primary_10_1039_b712800b crossref_primary_10_1517_14656566_2014_970173 crossref_primary_10_1021_ja5082519 crossref_primary_10_1002_anie_200503035 crossref_primary_10_1002_psc_2788 crossref_primary_10_1002_jps_24481 crossref_primary_10_1016_j_jmgm_2020_107790 crossref_primary_10_1021_acsbiomaterials_9b00153 crossref_primary_10_4155_tde_11_74 crossref_primary_10_1103_PhysRevE_76_021119 crossref_primary_10_1039_b806410p crossref_primary_10_1103_PhysRevE_80_051503 crossref_primary_10_1038_s41570_020_0215_y crossref_primary_10_1016_j_nantod_2015_11_003 crossref_primary_10_1016_j_biomaterials_2012_04_047 crossref_primary_10_1002_ange_201509304 crossref_primary_10_1039_b605536m crossref_primary_10_1039_c3cc39052g crossref_primary_10_1039_C5RA00481K crossref_primary_10_1039_b912851d crossref_primary_10_1039_c3nr05414d crossref_primary_10_1007_s11051_011_0254_x crossref_primary_10_1021_ja0682172 crossref_primary_10_1038_s41570_019_0129_8 crossref_primary_10_1002_ange_200804019 crossref_primary_10_1021_jp903341u crossref_primary_10_1039_C8SM00435H crossref_primary_10_1177_0091270005277936 crossref_primary_10_1103_PhysRevE_73_031502 crossref_primary_10_1021_bm401215w crossref_primary_10_1039_C4PY00173G crossref_primary_10_1039_D3SM00077J crossref_primary_10_3762_bjoc_6_106 crossref_primary_10_1021_acs_biomac_2c01068 crossref_primary_10_1021_bm700561t crossref_primary_10_1002_anie_200805010 crossref_primary_10_1039_c2sc01088g crossref_primary_10_1039_C7NR03875E crossref_primary_10_1039_c2jm35329f crossref_primary_10_1073_pnas_2001861117 crossref_primary_10_1103_PhysRevE_77_051904 crossref_primary_10_1529_biophysj_105_070136 crossref_primary_10_1016_j_jcis_2020_09_023 crossref_primary_10_3390_molecules28134970 crossref_primary_10_1021_ar400027c crossref_primary_10_1021_la800942n crossref_primary_10_1017_S0033583522000014 crossref_primary_10_1039_D2MH01158A crossref_primary_10_1021_cm403028b crossref_primary_10_1016_j_bmcl_2022_128733 crossref_primary_10_1039_c2sm25671a crossref_primary_10_1021_ja4074529 crossref_primary_10_1016_j_ijpharm_2019_118752 crossref_primary_10_1016_j_mtchem_2018_07_003 crossref_primary_10_1021_acsnano_3c05288 crossref_primary_10_1016_j_bbrep_2017_07_001 crossref_primary_10_1039_C4OB00447G crossref_primary_10_1002_ange_201006496 crossref_primary_10_1002_anie_201509304 crossref_primary_10_3390_md13085297 crossref_primary_10_1529_biophysj_107_113936 crossref_primary_10_1021_bm900388b crossref_primary_10_1517_14656566_2016_1127914 crossref_primary_10_1021_acs_jpcb_9b04928 crossref_primary_10_1142_S0219581X09006341 crossref_primary_10_1002_elps_202400039 crossref_primary_10_3390_molecules26154587 crossref_primary_10_1016_j_bbamem_2007_02_021 crossref_primary_10_1021_la5045656 crossref_primary_10_1002_anie_201310006 crossref_primary_10_1002_ange_201103641 crossref_primary_10_1039_C5RA13827B crossref_primary_10_1021_ja210299g crossref_primary_10_1002_bip_22491 crossref_primary_10_1002_cbic_201800727 crossref_primary_10_1039_b814583k crossref_primary_10_1021_acs_langmuir_9b01542 crossref_primary_10_1021_acs_orglett_5b03622 crossref_primary_10_1002_chem_200800012 crossref_primary_10_1073_pnas_1017343108 crossref_primary_10_1002_psc_3544 crossref_primary_10_4137_CMT_S2150 crossref_primary_10_1002_ange_201310006 crossref_primary_10_1021_la900987r crossref_primary_10_1002_anie_201103641 crossref_primary_10_1016_S0003_4509_06_75318_4 crossref_primary_10_1007_s11051_013_1931_8 crossref_primary_10_1021_acs_nanolett_1c02944 crossref_primary_10_1002_ange_200500536 crossref_primary_10_1039_C7CS00515F crossref_primary_10_1021_ma5024796 crossref_primary_10_1039_C0SM00810A crossref_primary_10_1002_adhm_201300041 crossref_primary_10_1039_b923942a crossref_primary_10_3389_fbioe_2021_654339 crossref_primary_10_1002_advs_201802043 crossref_primary_10_3390_ijms222312662 crossref_primary_10_1038_nmat1912 crossref_primary_10_1002_anie_201006496 crossref_primary_10_1039_b712621b crossref_primary_10_1039_c1sm05698k crossref_primary_10_1039_c2nr31149f crossref_primary_10_1002_ange_200503035 crossref_primary_10_1039_D0NR05622G crossref_primary_10_1039_D0CC04299D crossref_primary_10_1016_j_nano_2012_07_007 crossref_primary_10_1039_c3sm51369f crossref_primary_10_1586_eem_11_93 crossref_primary_10_1016_S1748_0132_08_70041_0 crossref_primary_10_1039_C5CP00973A crossref_primary_10_1007_s12029_016_9866_9 crossref_primary_10_3390_ijms21144960 crossref_primary_10_1002_advs_202101058 crossref_primary_10_1002_ange_201207699 crossref_primary_10_1021_acs_jpcb_1c04203 crossref_primary_10_1021_bm701302p crossref_primary_10_1021_ja9088023 crossref_primary_10_1002_cplu_202000373 crossref_primary_10_1073_pnas_2120346119 crossref_primary_10_1039_c1cp21338e crossref_primary_10_1002_anie_200700861 crossref_primary_10_1021_ja044319l crossref_primary_10_1007_s12325_020_01600_x crossref_primary_10_1002_anie_201207699 crossref_primary_10_1002_anie_200804019 crossref_primary_10_1002_psc_955 crossref_primary_10_1002_adma_201305617 crossref_primary_10_1529_biophysj_107_108175 crossref_primary_10_1021_acsnano_9b08408 crossref_primary_10_1021_la304862f crossref_primary_10_1039_c0cc00212g crossref_primary_10_1016_j_biomaterials_2014_10_011 crossref_primary_10_1039_C0CC04580B crossref_primary_10_1002_psc_2647 crossref_primary_10_1002_smll_202200807 crossref_primary_10_1002_bip_23085 crossref_primary_10_1039_C1NR11151E crossref_primary_10_1002_adma_202006362 crossref_primary_10_1039_D0SM02095H crossref_primary_10_1073_pnas_2218428120 crossref_primary_10_1021_acsami_8b00246 crossref_primary_10_1039_B706640F crossref_primary_10_1007_s12013_007_9003_2 crossref_primary_10_1080_17425247_2022_2098276 crossref_primary_10_1021_la901887y crossref_primary_10_1088_0953_8984_21_42_424114 crossref_primary_10_1002_smll_201201384 crossref_primary_10_1016_j_ijpx_2022_100128 crossref_primary_10_1021_acsomega_0c03852 crossref_primary_10_1021_acs_chemrev_7b00522 crossref_primary_10_1021_acs_chemrev_9b00509 crossref_primary_10_1016_j_addr_2016_06_015 crossref_primary_10_1002_psc_3157 crossref_primary_10_1002_anie_202212829 crossref_primary_10_1021_bm500981y crossref_primary_10_1016_j_cocis_2019_01_002 crossref_primary_10_1016_j_jsb_2017_09_002 crossref_primary_10_1039_c0sm01186j crossref_primary_10_1039_b903797g crossref_primary_10_1039_c2cs35172b crossref_primary_10_1021_acs_langmuir_8b00094 crossref_primary_10_4155_tde_14_111 crossref_primary_10_1021_la804175h crossref_primary_10_1038_nmat1919 crossref_primary_10_1038_s41467_020_20689_w crossref_primary_10_1039_D0CC01395A crossref_primary_10_1016_S0006_3495_04_74304_0 crossref_primary_10_1021_jp072832q crossref_primary_10_1002_smll_201703216 crossref_primary_10_1016_j_febslet_2009_07_003 crossref_primary_10_1021_jp902860a crossref_primary_10_1002_psc_913 crossref_primary_10_1039_b604513h crossref_primary_10_1016_j_biomaterials_2010_03_080 crossref_primary_10_1246_bcsj_20170424 crossref_primary_10_2165_0003088_200948010_00004 crossref_primary_10_1039_b701029j crossref_primary_10_1039_D0RA06237E crossref_primary_10_1021_la202162q crossref_primary_10_1021_la061849h crossref_primary_10_1002_tcr_202200053 |
Cites_doi | 10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N 10.1126/science.1063187 10.1073/pnas.97.1.145 10.1038/347037a0 10.1038/347044a0 10.1073/pnas.97.3.1079 10.1096/fj.01-0442hyp 10.1002/anie.199013041 10.1016/S0006-3495(02)73939-8 10.1016/S0092-8674(00)80961-7 10.1051/jcp/1983800149 10.1021/la000069k 10.1093/oso/9780198520245.001.0001 10.1073/pnas.90.1.163 10.1038/386259a0 10.1073/pnas.252340199 10.1073/pnas.90.8.3334 10.1016/S0006-3495(93)81393-6 10.1002/1521-4095(20020605)14:11<775::AID-ADMA775>3.0.CO;2-0 10.1246/bcsj.46.3407 10.1126/science.8073284 10.1002/anie.198305653 10.1093/emboj/18.4.815 10.1038/44880 10.1016/S0065-3233(08)60528-8 10.1128/mr.58.1.94-144.1994 |
ContentType | Journal Article |
Copyright | Copyright 1993-2003 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Sep 2, 2003 Copyright © 2003, The National Academy of Sciences 2003 |
Copyright_xml | – notice: Copyright 1993-2003 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Sep 2, 2003 – notice: Copyright © 2003, The National Academy of Sciences 2003 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1730609100 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 10262 |
ExternalDocumentID | 623782961 10_1073_pnas_1730609100 12930900 100_18_10258 3147703 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO AJYGW AS DZ GJ KM OHM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c495t-d04b144036c268d291061c08f3a3db262e535d411549e0ed81fc726163f673d63 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:26:46 EDT 2024 Fri Oct 25 05:03:57 EDT 2024 Thu Oct 10 19:32:56 EDT 2024 Fri Aug 23 02:53:02 EDT 2024 Sat Sep 28 07:36:36 EDT 2024 Wed Nov 11 00:29:41 EST 2020 Thu May 30 08:51:40 EDT 2019 Fri Feb 02 07:04:45 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-d04b144036c268d291061c08f3a3db262e535d411549e0ed81fc726163f673d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 To whom correspondence should be addressed. E-mail: franck.artzner@cep.u-psud.fr. Abbreviations: SAXS, small angle x-ray scattering; WAXS, wide angle x-ray scattering. This paper was submitted directly (Track II) to the PNAS office. M.P. and F.A. contributed equally to the work. Edited by Daniel Branton, Harvard University, Cambridge, MA, and approved July 2, 2003 |
OpenAccessLink | https://europepmc.org/articles/pmc193548?pdf=render |
PMID | 12930900 |
PQID | 201352776 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | proquest_journals_201352776 pnas_primary_100_18_10258 jstor_primary_3147703 pubmed_primary_12930900 pubmedcentral_primary_oai_pubmedcentral_nih_gov_193548 proquest_miscellaneous_73703774 crossref_primary_10_1073_pnas_1730609100 pnas_primary_100_18_10258_fulltext |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2003-09-02 |
PublicationDateYYYYMMDD | 2003-09-02 |
PublicationDate_xml | – month: 09 year: 2003 text: 2003-09-02 day: 02 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2003 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 9989499 - Cell. 1999 Jan 8;96(1):79-88 11772939 - FASEB J. 2002 Jan;16(1):77-83 11721046 - Science. 2001 Nov 23;294(5547):1684-8 11268062 - Angew Chem Int Ed Engl. 2001 Mar 16;40(6):988-1011 11607345 - Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):163-7 10655487 - Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1079-84 3541539 - Adv Protein Chem. 1986;38:181-364 12202394 - Biophys J. 2002 Sep;83(3):1716-27 9069283 - Nature. 1997 Mar 20;386(6622):259-62 10553913 - Nature. 1999 Oct 28;401(6756):935-8 8457674 - Biophys J. 1993 Feb;64(2):502-19 2395461 - Nature. 1990 Sep 6;347(6288):44-9 7682699 - Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3334-8 10022824 - EMBO J. 1999 Feb 15;18(4):815-21 8073284 - Science. 1994 Sep 2;265(5177):1427-32 10618385 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):145-50 2395459 - Nature. 1990 Sep 6;347(6288):37-44 8177173 - Microbiol Rev. 1994 Mar;58(1):94-144 12456886 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16052-7 e_1_3_2_26_2 e_1_3_2_27_2 (e_1_3_2_12_2) 1998; 25 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_3_2 e_1_3_2_2_2 e_1_3_2_14_2 (e_1_3_2_13_2) 2001; 467 |
References_xml | – ident: e_1_3_2_9_2 doi: 10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N – ident: e_1_3_2_28_2 doi: 10.1126/science.1063187 – ident: e_1_3_2_20_2 doi: 10.1073/pnas.97.1.145 – ident: e_1_3_2_4_2 doi: 10.1038/347037a0 – ident: e_1_3_2_5_2 doi: 10.1038/347044a0 – ident: e_1_3_2_29_2 doi: 10.1073/pnas.97.3.1079 – ident: e_1_3_2_19_2 doi: 10.1096/fj.01-0442hyp – volume: 467 start-page: 1005 year: 2001 ident: e_1_3_2_13_2 publication-title: Nucl. Instr. Meth. Phys. Res. A – ident: e_1_3_2_6_2 doi: 10.1002/anie.199013041 – ident: e_1_3_2_26_2 doi: 10.1016/S0006-3495(02)73939-8 – ident: e_1_3_2_3_2 doi: 10.1016/S0092-8674(00)80961-7 – ident: e_1_3_2_16_2 doi: 10.1051/jcp/1983800149 – ident: e_1_3_2_27_2 doi: 10.1021/la000069k – ident: e_1_3_2_15_2 doi: 10.1093/oso/9780198520245.001.0001 – ident: e_1_3_2_8_2 doi: 10.1073/pnas.90.1.163 – ident: e_1_3_2_10_2 doi: 10.1038/386259a0 – ident: e_1_3_2_22_2 doi: 10.1073/pnas.252340199 – ident: e_1_3_2_21_2 doi: 10.1073/pnas.90.8.3334 – volume: 25 start-page: 798 year: 1998 ident: e_1_3_2_12_2 publication-title: Proc. Controlled Release Soc. – ident: e_1_3_2_14_2 – ident: e_1_3_2_11_2 doi: 10.1016/S0006-3495(93)81393-6 – ident: e_1_3_2_1_2 doi: 10.1002/1521-4095(20020605)14:11<775::AID-ADMA775>3.0.CO;2-0 – ident: e_1_3_2_17_2 doi: 10.1246/bcsj.46.3407 – ident: e_1_3_2_7_2 doi: 10.1126/science.8073284 – ident: e_1_3_2_2_2 doi: 10.1002/anie.198305653 – ident: e_1_3_2_24_2 doi: 10.1093/emboj/18.4.815 – ident: e_1_3_2_25_2 doi: 10.1038/44880 – ident: e_1_3_2_18_2 doi: 10.1016/S0065-3233(08)60528-8 – ident: e_1_3_2_23_2 doi: 10.1128/mr.58.1.94-144.1994 |
SSID | ssj0009580 |
Score | 2.2935474 |
Snippet | The controlled self-assembly of complex molecules into well defined hierarchical structures is a promising route for fabricating nanostructures. These... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10258 |
SubjectTerms | Acetates Biological Sciences Biomimetics Biophysics Capsid - chemistry Disulfides Electron density Hydrogen bonds Models, Molecular Molecular structure Molecules Nanotubes Peptides Peptides, Cyclic - chemistry Protein Conformation Protein Structure, Secondary Self assembly Somatostatin - analogs & derivatives Somatostatin - chemistry Vibration Wave diffraction |
Title | Biomimetic Organization: Octapeptide Self-Assembly into Nanotubes of Viral Capsid-like Dimension |
URI | https://www.jstor.org/stable/3147703 http://www.pnas.org/content/100/18/10258.abstract https://www.ncbi.nlm.nih.gov/pubmed/12930900 https://www.proquest.com/docview/201352776 https://search.proquest.com/docview/73703774 https://pubmed.ncbi.nlm.nih.gov/PMC193548 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RnrggCgVCoViIQzlkN7GzjsMNKqoCKnCgUm8hfqkRiROR7KH_vuM8drcILpxysMeJPDP2N_HMZ4A3orDKs-yFMqYyTJim6FIqDbmNRCGz2NqBxPXiKz-_TD5fra6morBuSqt0SpYLV9ULV14PuZVtrZZzntjy-8Upgg4E2ss92EP7nCP0DdGuGMtOKK6-CU1mOp-ULVtXdIsYRbjfJIc74HCzizJf3bazKY15iZ7sFPv_DXj-mT-5syGdPYQHE5Ik78cvPoB7xj2Cg8lXO3IyEUq_fQw_P5RNXda-XJE0O7WX78g31Retz2vRhnSmsiFCaVPL6oaUrm-IK1zTryWO1ljis4EroooW7Tesyl-GaH8zgP_bdgiXZx9_nJ6H080KocKAqA91lEh_qsu4olxomvnAUEXCsoJpSTk1K7bSiafqyUxktIhRoxhrcWZ5yjRnT2DfNc48A4J4yGQJF1ZGGhddKyKtbKaV132cpCKAk3lq83Yk0MiHg--U5X6C861CAjgcpn7Tj-EAuCIFEAw9t-IoL_BBVzj863-25XbKnwngaFZiPrlolyPyQfCZpjyAV5tW9C1_YFI406y7PGX4dsTHATwdFb59zWQ4AfA7prDp4Fm777agMQ_s3aPxPv9fwSO4P-QT-jMt-gL2-99r8xJxUS-PMSL49OV4cIdbNSQMRw |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOcAFUSiQFqiFOJRDdhM76yTcoKJaoFs4tFJvIX6JiMSJmuyBf884j90tggunHPxI5JmxP8fffAZ4k-RGOpU9X4RU-BFTFENKxj43QZKLNDSmF3FdXfDlVfT5enE9JoW1I63SSlHMbFnNbPGj51Y2lZxPPLH5t9Upgg4E2vO7cA_DNYimPfpGajcZEk8ozr8RjSZBn5jNG5u3sxCdmrtlsr8FDpe7IHX5bTvL0sBMdHKnWP9v0PNPBuXOknT2CB6OWJK8H755H-5o-xj2x2htyckoKf32CXz_UNRVUbmERVLvZF--I19llzeO2aI0aXVpfATTuhLlL1LYriY2t3W3FthbbYjjA5dE5g16sF8WPzVR7m4A97_tAK7OPl6eLv3xbgVf4pao81UQCXeuy7ikPFE0dVtDGSSG5UwJyqlesIWKnFhPqgOtkhBtirstzgyPmeLsKezZ2urnQBAR6TTiiRGBwmnXJIGSJlXSWT-M4sSDk2los2aQ0Mj6o--YZW6As61BPDjoh35Tj2EHOCd54PU1t82xfYIPusDuX_-zLDMjg8aDo8mI2RikbYbYB-FnHHMPjjelGF3uyCS3ul63Wczw7YiQPXg2GHz7mtFxPOC3XGFTwel23y5Bd-71uwf3Pfzfhsdwf3m5Os_OP118OYIHPbvQnXDRF7DX3az1S0RJnXjVB8VvJV8OpA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiEuqIVCQ4FaiEM5ZDexs47DDQqr8mjpgUq9hfglIvJSkz3w7xnnsbtFcOGUgx-J7Bn7c-abzwCvRGaVU9nzZUilHzFN0aVU7HMbiEwmobW9iOv5BT-7ij5dL653QEy5MD1pX8l8VhXlrMp_9NzKplTziSc2vzw_RdCBQHveaDu_A3fRZQM-ndPXcrtiSD6huAZHNJpEfWI2b6qsnYVo2Nxtlf1NcLjlBYnLcdvamgZ2opM8xfp_g59_sii3tqXlHjwY8SR5O3z3PuyY6iHsjx7bkpNRVvr1I_j-Lq_LvHRJi6TeysB8Q76qLmscu0Ub0prC-gioTSmLXySvuppUWVV3K4m91ZY4TnBBVNagFftF_tMQ7e4HcP_cDuBq-eHb6Zk_3q_gKzwWdb4OIuliu4wryoWmiTseqkBYljEtKadmwRY6coI9iQmMFiHOK564OLM8Zpqzx7Bb1ZU5BIKoyCQRF1YGGpdeKwKtbKKVs4AwioUHJ9PQps0go5H24e-YpW6A082EeHDQD_26HsMOcF3ywOtrbppje4EPusDuX_6zLLUji8aDo2kS09FR2xTxD0LQOOYeHK9L0cNc2CSrTL1q05jh2xEle_BkmPDNa0bD8YDfMoV1BafdfbsETbrX8B5M-On_NjyGe5fvl-mXjxefj-B-TzB0QS76DHa7m5V5jkCpky96n_gNDekPtw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomimetic+Organization%3A+Octapeptide+Self-Assembly+into+Nanotubes+of+Viral+Capsid-like+Dimension&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Val%C3%A9ry%2C+C%C3%A9line&rft.au=Paternostre%2C+Ma%C3%AFt%C3%A9&rft.au=Robert%2C+Bruno&rft.au=Gulik-Krzywicki%2C+Thadd%C3%A9e&rft.date=2003-09-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=100&rft.issue=18&rft.spage=10258&rft.epage=10262&rft_id=info:doi/10.1073%2Fpnas.1730609100&rft.externalDocID=3147703 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F100%2F18.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F100%2F18.cover.gif |